我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

在Kubernetes上运行Kafka合适吗

这篇文章主要讲解了“在Kubernetes上运行Kafka合适吗”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“在Kubernetes上运行Kafka合适吗”吧!

创新互联专注于企业成都营销网站建设、网站重做改版、连平网站定制设计、自适应品牌网站建设、HTML5商城网站制作、集团公司官网建设、成都外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为连平等各大城市提供网站开发制作服务。

介绍

Kubernetes设计的初衷是运行无状态工作负载。这些通常采用微服务架构的工作负载,是轻量级,可水平扩展,遵循十二要素应用程序,可以处理环形断路和随机Monkey测试。

另一方面,Kafka本质上是一个分布式数据库。这意味着你必须处理状态,它比微服务更重量级。Kubernetes支持有状态的工作负载,但你必须谨慎对待它,正如Kelsey  Hightower在最近的两条推文中指出的那样:

在Kubernetes上运行Kafka合适吗

现在你应该在Kubernetes上运行Kafka吗?我的反问是:没有它,Kafka会跑得更好吗?这就是为什么我要指出Kafka和Kubernetes之间的相互补充性以及你可能遇到的陷阱。

运行时

让我们先看一下基本的东西——运行时本身。

进程

Kafka brokers对CPU很友好。TLS可能会引入一些开销。如果Kafka客户端使用加密,则需要更多CPU,但这不会影响brokers。

内存

Kafka brokers是内存消耗大户。JVM堆通常可以限制为4-5  GB,但由于Kafka大量使用页面缓存,因此还需要足够的系统内存。在Kubernetes中,可以相应地设置容器资源限制和请求。

存储

容器中的存储是短暂的——重启后数据将丢失。可以对Kafka数据使用emptyDir卷,这将产生相同的效果:brokers的数据将在停机后丢失。您的消息在其他broker上作为副本还是可以使用的。因此,重新启动后,失败的broker必须得复制所有的数据,这可能是一个耗时过程。

这就是你应该使用持久存储的原因。使用XFS或ext4的非本地持久性块存储更合适。我警告你:不要使用NFS。NFS  v3和v4都不会起作用。简而言之,Kafka  broker会因为NFS“愚蠢重命名”问题而无法删除数据目录,自行终止。如果你仍然不相信我,那么请仔细阅读这篇博文。存储必须是非本地的,以便Kubernetes在重新启动或重新定位时可以更灵活地选择另一个节点。

网络

与大多数分布式系统一样,Kafka性能在很大程度上取决于低网络延迟和高带宽。不要试图将所有代理放在同一节点上,因为这会降低可用性。如果Kubernetes节点出现故障,那么整个Kafka集群都会出现故障。不要跨数据中心扩展Kafka集群。这同样适用于Kubernetes集群。不同的可用区域是一个很好的权衡。

配置

清单

Kubernetes网站包含一个非常好的教程,介绍如何使用清单设置ZooKeeper。由于ZooKeeper是Kafka的一部分,因此可以通过这个了解哪些Kubernetes概念被应用在这里。一旦理解,您也可以对Kafka集群使用相同的概念。

  • Pod:Pod是Kubernetes中最小的可部署单元。它包含您的工作负载,它代表群集中的一个进程。一个Pod包含一个或多个容器。整体中的每个ZooKeeper服务器和Kafka集群中的每个Kafka  broker都将在一个单独的Pod中运行。

  • StatefulSet:StatefulSet是一个Kubernetes对象,用于处理需要协调的多个有状态工作负载。StatefulSets保证Pod的有序性和***性的。

  • Headless  Services:服务通过逻辑名称将Pod与客户端分离。Kubernetes负责负载平衡。但是,对于ZooKeeper和Kafka等有状态工作负载,客户端必须与特定实例进行通信。这就是  Headless Services发挥作用的地方:作为客户端,仍然可以获得逻辑名称,但不必直接访问Pod。

  • 持久卷:如上所述,需要配置非本地持久块存储。

Yolean提供了一套全面的清单,可以帮助您开始使用Kubernetes上的Kafka。

Helm Charts

Helm是Kubernetes的包管理器,类似yum,apt,Homebrew或Chocolatey等OS包管理器。它允许您安装Helm  Charts中描述的预定义软件包。精心设计的Helm  Charts能简化所有参数正确配置的复杂任务,以便在Kubernetes上运行Kafka。有几张图表适用于Kafka的的可供选择:一个是处于演进状态的官方图表,一个来自Confluent,另一个来自Bitnami,仅举几例。

Operators

由于Helm的一些限制,另一种工具变得非常流行:Kubernetes  Operators。Operators不仅可以为Kubernetes打包软件,还可以为Kubernetes部署和管理一个软件。

评价很高的Operators名单中提到Kafka有两个,其中一个是Strimzi,Strimzi使得在几分钟内启动Kafka集群变得非常容易,几乎不需要任何配置,它增加了一些漂亮的功能,如群集间点对点TLS加密。Confluent还宣布即将推出新的Operator。

性能

运行性能测试以对Kafka安装进行基准测试非常重要。在您遇到麻烦之前,它会为您提供有关可能的瓶颈的地方。幸运的是,Kafka已经提供了两个性能测试工具:kafka-producer-perf-test.sh和kafka-consumer-perf-test.sh。记得经常使用它们。作为参考,可以使用Jay  Kreps的博客结果,或者 Stéphane Maarek在 Amazon MSK的评论。

运维

监控

可见性非常重要,否则您将不知道发生了什么。如今,有一种不错的工具可以用云原生方式监控指标。Prometheus和Grafana是两种流行的工具。Prometheus可以直接从JMX导出器收集所有Java进程(Kafka,ZooKeeper,Kafka  Connect)的指标。添加cAdvisor指标可为提供有关Kubernetes资源使用情况的其他信息。

Strimzi为Kafka提供了一个优雅的Grafana仪表板示例。它以非常直观的方式可视化关键指标,如未复制的和离线分区。它通过资源使用和性能以及稳定性指标来补充这些指标。因此,可以免费获得基本的Kafka集群监控!

在Kubernetes上运行Kafka合适吗

资料来源:https://strimzi.io/docs/master/#kafka_dashboard

可以通过客户端监控(消费者和生产者指标),使用Burrow滞后监控,使用Kafka Monitor进行端到端监控,来完成这个任务

日志记录

日志记录是另一个关键部分。确保Kafka安装中的所有容器都记录到标准输出(stdout)和标准错误输出(stderr),并确保Kubernetes集群将所有日志聚合到中央日志记录设施中如Elasticsearch中。

健康检查

Kubernetes使用活跃度和就绪探测器来确定Pod是否健康。如果活跃度探测失败,Kubernetes将终止容器并在相应设置重启策略时自动重启。如果准备就绪探测失败,那么Kubernetes将通过服务从服务请求中删除该Pod。这意味着在这种情况下不再需要人工干预,这是一大优点。

滚动更新

StatefulSets支持自动更新:滚动更新策略将一次更新一个Kafka  Pod。通过这种方式,可以实现零停机时间,这是Kubernetes带来的另一大优势。

扩展

扩展Kafka集群并非易事。但是,Kubernetes可以很容易地将Pod缩放到一定数量的副本,这意味着可以声明式地定义所需数量的Kafka  brokers。困难的部分是在放大或缩小之前重新分配部分。同样,Kubernetes可以帮助您完成这项任务。

管理

通过在Pod中打开shell,可以使用现有的shell脚本完成Kafka群集的管理任务,例如创建主题和重新分配分区。这不是一个很好的解决方案。Strimzi支持与另一个Operator管理主题。这还有改进的余地。

备份和还原

现在Kafka的可用性还取决于Kubernetes的可用性。如果Kubernetes群集出现故障,那么在最坏的情况下Kafka群集也会故障。墨菲定律告诉我们,这也会发生在你身上,你会丢失数据。要降低此风险,请确保您具有备份想法。MirrorMaker是一种可选方案,另一种可能是利用S3进行连接备份,如Zalando的博客文章所述。

感谢各位的阅读,以上就是“在Kubernetes上运行Kafka合适吗”的内容了,经过本文的学习后,相信大家对在Kubernetes上运行Kafka合适吗这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网站标题:在Kubernetes上运行Kafka合适吗
文章URL:http://mswzjz.cn/article/psespd.html

其他资讯