我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Spark中的RDD简单算子如何理解

Spark中的RDD简单算子如何理解,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

太和网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站建设等网站项目制作,到程序开发,运营维护。创新互联于2013年创立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

collect

返回RDD的所有元素

scala> var input=sc.parallelize(Array(-1,0,1,2,2)) input: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[15] at parallelize at :27 scala> var result=input.collect result: Array[Int] = Array(-1, 0, 1, 2, 2)

count,coutByValue

count返回RDD的元素数量,countByValue返回每个值的出现次数

scala> var input=sc.parallelize(Array(-1,0,1,2,2)) scala> var result=input.count result: Long = 5 scala> var result=input.countByValue result: scala.collection.Map[Int,Long] = Map(0 -> 1, 1 -> 1, 2 -> 2, -1 -> 1)

take,top,takeOrdered

take返回RDD的前N个元素 takeOrdered默认返回升序排序的前N个元素,可以指定排序算法 Top返回降序排序的前N个元素

var input=sc.parallelize(Array(1,2,3,4,9,8,7,5,6))  scala> var result=input.take(6) result: Array[Int] = Array(1, 2, 3, 4, 9, 8) scala> var result=input.take(20) result: Array[Int] = Array(1, 2, 3, 4, 9, 8, 7, 5, 6)  scala> var result=input.takeOrdered(6) result: Array[Int] = Array(1, 2, 3, 4, 5, 6) scala> var result=input.takeOrdered(6)(Ordering[Int].reverse) result: Array[Int] = Array(9, 8, 7, 6, 5, 4)  scala> var result=input.top(6) result: Array[Int] = Array(9, 8, 7, 6, 5, 4 )

Filter

传入返回值为boolean的函数,返回改函数结果为true的RDD

scala> var input=sc.parallelize(Array(-1,0,1,2)) scala> var result=input.filter(_>0).collect() result: Array[Int] = Array(1, 2)

map,flatmap

map对每个元素执行函数,转换为新的RDD,flatMap和map类似,但会把map的返回结果做flat处理,就是把多个Seq的结果拼接成一个Seq输出

scala> var input=sc.parallelize(Array(-1,0,1,2)) scala> var result=input.map(_+1).collect result: Array[Int] = Array(0, 1, 2, 3)  scala>var result=input.map(x=>x.to(3)).collect result: Array[scala.collection.immutable.Range.Inclusive] = Array(Range(-1, 0, 1, 2, 3), Range(0, 1, 2, 3), Range(1, 2, 3), Range(2, 3))  scala>var result=input.flatMap(x=>x.to(3)).collect result: Array[Int] = Array(-1, 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3)

distinct

RDD去重

scala>var input=sc.parallelize(Array(-1,0,1,2,2)) scala>var result=input.distinct.collect result: Array[Int] = Array(0, 1, 2, -1)

Reduce

通过函数聚集RDD中的所有元素

scala> var input=sc.parallelize(Array(-1,0,1,2)) scala> var result=input.reduce((x,y)=>{println(x,y);x+y}) (-1,1)  //处理-1,1,结果为0,RDD剩余元素为{0,2} (0,2)   //上面的结果为0,在处理0,2,结果为2,RDD剩余元素为{0} (2,0)   //上面结果为2,再处理(2,0),结果为2,RDD剩余元素为{} result: Int = 2

sample,takeSample

sample就是从RDD中抽样,***个参数withReplacement是指是否有放回的抽样,true为放回,为false为不放回,放回就是抽样结果可能重复,第二个参数是fraction,0到1之间的小数,表明抽样的百分比  takeSample类似,但返回类型是Array,***个参数是withReplacement,第二个参数是样本个数

var rdd=sc.parallelize(1 to 20)  scala> rdd.sample(true,0.5).collect res33: Array[Int] = Array(6, 8, 13, 15, 17, 17, 17, 18, 20)  scala> rdd.sample(false,0.5).collect res35: Array[Int] = Array(1, 3, 10, 11, 12, 13, 14, 17, 18)  scala> rdd.sample(true,1).collect res44: Array[Int] = Array(2, 2, 3, 5, 6, 6, 8, 9, 9, 10, 10, 10, 14, 15, 16, 17, 17, 18, 19, 19, 20, 20)  scala> rdd.sample(false,1).collect res46: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)  scala> rdd.takeSample(true,3) res1: Array[Int] = Array(1, 15, 19)  scala> rdd.takeSample(false,3) res2: Array[Int] = Array(7, 16, 6)

collectAsMap,countByKey,lookup

collectAsMap把PairRDD转为Map,如果存在相同的key,后面的会覆盖前面的。 countByKey统计每个key出现的次数  Lookup返回给定key的所有value

scala> var input=sc.parallelize(List((1,"1"),(1,"one"),(2,"two"),(3,"three"),(4,"four")))  scala> var result=input.collectAsMap result: scala.collection.Map[Int,String] = Map(2 -> two, 4 -> four, 1 -> one, 3 -> three)  scala> var result=input.countByKey result: scala.collection.Map[Int,Long] = Map(1 -> 2, 2 -> 1, 3 -> 1, 4 -> 1)  scala> var result=input.lookup(1) result: Seq[String] = WrappedArray(1, one)  scala> var result=input.lookup(2) result: Seq[String] = WrappedArray(two)

groupBy,keyBy

groupBy根据传入的函数产生的key,形成元素为K-V形式的RDD,然后对key相同的元素分组 keyBy对每个value,为它加上key

scala> var rdd=sc.parallelize(List("A1","A2","B1","B2","C")) scala> var result=rdd.groupBy(_.substring(0,1)).collect result: Array[(String, Iterable[String])] = Array((A,CompactBuffer(A1, A2)), (B,CompactBuffer(B1, B2)), (C,CompactBuffer(C)))  scala> var rdd=sc.parallelize(List("hello","world","spark","is","fun")) scala> var result=rdd.keyBy(_.length).collect result: Array[(Int, String)] = Array((5,hello), (5,world), (5,spark), (2,is), (3,fun))

keys,values

scala> var input=sc.parallelize(List((1,"1"),(1,"one"),(2,"two"),(3,"three"),(4,"four"))) scala> var result=input.keys.collect result: Array[Int] = Array(1, 1, 2, 3, 4) scala> var result=input.values.collect result: Array[String] = Array(1, one, two, three, four)  mapvalues mapvalues对K-V形式的RDD的每个Value进行操作 scala> var input=sc.parallelize(List((1,"1"),(1,"one"),(2,"two"),(3,"three"),(4,"four"))) scala> var result=input.mapValues(_*2).collect result: Array[(Int, String)] = Array((1,11), (1,oneone), (2,twotwo), (3,threethree), (4,fourfour))

union,intersection,subtract,cartesian

union合并2个集合,不去重 subtract将***个集合中的同时存在于第二个集合的元素去掉 intersection返回2个集合的交集  cartesian返回2个集合的笛卡儿积

scala> var rdd1=sc.parallelize(Array(-1,1,1,2,3)) scala> var rdd2=sc.parallelize(Array(0,1,2,3,4))  scala> var result=rdd1.union(rdd2).collect result: Array[Int] = Array(-1, 1, 1, 2, 3, 0, 1, 2, 3, 4)  scala> var result=rdd1.intersection(rdd2).collect result: Array[Int] = Array(1, 2, 3)  scala> var result=rdd1.subtract(rdd2).collect result: Array[Int] = Array(-1)  scala> var result=rdd1.cartesian(rdd2).collect result: Array[(Int, Int)] = Array((-1,0), (-1,1), (-1,2), (-1,3), (-1,4), (1,0), (1,1), (1,2), (1,3), (1,4), (1,0), (1,1), (1,2), (1,3), (1,4), (2,0), (2,1), (2,2), (2,3), (2,4), (3,0), (3,1), (3,2), (3,3), (3,4))

关于Spark中的RDD简单算子如何理解问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


标题名称:Spark中的RDD简单算子如何理解
文章位置:http://mswzjz.cn/article/pjjjcc.html

其他资讯