我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

nosql包含什么,NoSQL的含义是什么?

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

成都创新互联是创新、创意、研发型一体的综合型网站建设公司,自成立以来公司不断探索创新,始终坚持为客户提供满意周到的服务,在本地打下了良好的口碑,在过去的10年时间我们累计服务了上千家以及全国政企客户,如成都茶艺设计等企业单位,完善的项目管理流程,严格把控项目进度与质量监控加上过硬的技术实力获得客户的一致赞赏。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。

newsql和nosql的区别和联系

在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。

OldSQL+NewSQL 在数据中心类应用中混合部署

采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。

商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。

商业银行数据中心存储架构

与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。

OldSQL+NoSQL 在互联网大数据应用中混合部署

在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。

数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。

淘宝海量数据产品技术架构

基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。

NewSQL+NoSQL 在行业大数据应用中混合部署

行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。

在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。

当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。

集中化BI系统数据存储架构

集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。

结语

当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。

目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。

数据库是什么?Oracle又是啥玩意?

经常会有人问我数据库是干啥的,其实一开始我是拒绝回答的,因为我也不能做到通俗易懂的表达出来,毕竟我接触这个概念也没有多长时间,但随着问的人多了,我觉得是时候脑补一下我的第一堂课了,万一哪天冒出来个货跟你掰扯这事儿,你没分分钟给他说清,最后弄个丢里儿丢面儿,好尴尬呀。

数据库,说白了就是按照数据结构来组织、存储和管理数据的仓库,这些数据是结构化的,并可为多种应用服务。也就是说,数据库是使用计算机服务器来存储数据的,专门用来提供各种数据服务。可以这样想像,过去一个公司的所有财务数据都是放在保险柜里面,而现在我们就可以针对这些财务数据搭建一个数据库放在某台计算机或服务器上面;再比如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。最常见的数据库有:银行储蓄系统、手机话费系统、美容美发会员系统、超市会员积分系统、水电费系统、机票或火车票系统等,这些都需要后台数据库基础设施的支撑。举了这么多例子,应该是把数据库说明白了,至少能在大脑里面有个概念,知道这个东西是干啥的。

现在大数据被炒的红得发紫,而大数据的基础也是数据,由此可见,数据是一个企业的核心资源,说它是企业的立身之本、发展之基都不为过,因此,维护数据库的数据库管理员(DBA)是企业不可或缺的。

目前市面上的数据库产品有很多,单从规模上分可分为大型、中型、小型几种,典型的数据库产品如下:

大型数据库:Oracle、DB2、Sybase;

中型数据库:MySQL、SQLServer、Infomix;

小型数据库:Access、VisualFoxpro。在众多的数据库产品中,Oracle数据库一直处于行业领导先地位,也是当今最流行的关系型数据库。Oracle可翻译成"甲骨文",它是一家以数据库为主业的全球化公司,是全球第二大软件公司(第一名是微软公司),目前Oracle在数据库软件市场已经排名第一,数据库软件市场份额达到48.6%,遥遥领先于第二名占有率仅为20.7%的IBM公司的DB2。在中国市场上的计算机专业系统后台所使用的数据库尤以Oracle数据库居多。但是购买Oracle数据库需要很大一笔费用,一般的大型企业使用,需要有专业人员进行管理和维护,中小企业承担不起。中小企业为了节省成本,一般使用MySQL、PostgreSQL这类免费开源的数据库,所以Oracle数据库相关的工作岗位一般是在大型企业中。

对于为什么选择Oracle数据库,而不是其他的数据库?

第一,是因为Oracle数据库占据最大的市场份额,并且越来越大,市场需要很多Oracle数据库方面的人才,中国有句老话说"做对事,选对人",是同样的道理;第二,是很多非Oracle数据库的老系统正往Oracle数据库迁移,其他数据库市场占有率在减少,其他数据库工作者有面临失业的风险;第三,Oracle有大量的官方学习文档,还有部分中文文档,可以有效地进行学习;第四,Oracle有大量的从业人员,有共同方向的朋友可以互相帮助,不再是孤胆英雄;第五,是可以很容易地从Oracle官方网站下载功能齐全的数据库最新版本进行学习,可以让你了解数据库方面的最新发展趋势等。

在此说明,以后的所有内容都是基于Oracle11g数据库产品的,下面我们就简单介绍一下Oracle11g的系列产品:

企业版(EnterpriseEdition)此版本包含了数据库的所有组件,并且能够通过购买选项和程序包来进一步对其增强。

能支持例如大业务量的在线事务处理OLTP(On-LineTransactionProcessing联机事务处理系统)环境、查询密集的数据仓库和要求苛刻的互联网应用程序。

标准版1(StandardEditionOne)此版本为工作组、部门级和互联网、内联网应用程序提供了前所未有的易用性和性价比。从针对小型商务的单服务器环境到大型的分布式部门环境,该版本包含了构建重要商务应用程序所必需的全部工具。它仅许可在最高容量为2个处理器的服务器上使用,支持Windows/Linux/UNIX操作系统,并支持64位平台操作系统。

标准版(StandardEdition)此版本提供了StandardEditionOne所不具有的易用性、能力和性能,并且利用真正的应用集群(RAC)提供了对更大型计算机和服务集群的支持。它可以在最高容量为4个处理器的单台服务器上、或者在一个支持最多4个处理器的集群上使用,可支持Windows、Linux和UNIX操作系统,并支持64位平台操作系统。

简化版此版本支持与标准版1、标准版和企业版完全兼容的单用户开发和部署。通过将Oracle数据库获奖的功能引入到个人工作站中,该版本提供了结合世界上最流行的数据库功能的数据库,并且该数据库具有桌面产品通常具有的易用性和简单性,可支持Linux和Windows操作系统。

从存储结构上来说,目前流行的数据库主要包含以下两种:

RDBMS:关系型数据库,是指采用了关系模型来组织数据的数据库;

NoSQL数据库,是指那些非关系型的、分布式的数据库。简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

关系型数据库优点:

1、容易理解

二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。

2、使用方便

通用的SQL语言使得操作关系型数据库非常方便。

3、易于维护

丰富的完整性大大减低了数据冗余和数据部移植的概率。

4、事务安全

所有关系型数据库都不同程度的遵守事物的四个基本属性,因此对于银行、电信、证券等交易型业务是不可或缺的。

关系型数据库的瓶颈:

1、高并发读写需求

网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统型数据库来说,硬盘I/O是一个很大的瓶颈。

2、海量数据的高效率读写

互联网上每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的。

3、高扩展性和可用性

在基于WEB的结构中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像WEBServer和APPLICATIONServer那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。

NoSQL数据库

NoSQL一词首先是CarloStrozzi在1998年提出的。2009年再次提出了NoSQL一词,用于指那些非关系型的、分布式的,且一般不保证遵循ACID原则的数据存储系统。

NoSQL具有以下特点:

1、可以弥补关系型数据库的不足

2、针对某些特定的需求而设计,可以具有极高的性能

3、大部分都是开源的,由于成熟度不够,存在潜在的稳定性和维护性问题。

关系型数据库适用于结构化数据,而非关系型数据库适用于非结构化数据,二者优势互补,相得益彰。

Oracle数据库未来的发展方向是提供结构化、非结构化、半结构化的解决方案,实现关系型数据库和NoSQL共存互补。值得强调的是,目前关系型数据库仍是主流数据库。

虽然NoSQL数据库打破了关系型数据库存储的观念,可以很好地满足WEB2.0时代数据的存储要求,但NoSQL数据库也有自己的缺陷。在现阶段的情况下,可以将关系型数据库和NoSQL数据库结合使用,相互弥补各自的不足。

关于数据库及其代表产品Oracle今天就介绍这么多,有兴趣的可以继续深挖,希望我的介绍能让你对数据库有一个更深入的认识。如果有志于在这方面发展的话,就让我们一起跟往事干杯从头再来。

如何选择NoSQL数据库

NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的

SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。

NoSQL(NoSQL

= Not Only SQL

),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数

据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:

并发控制

发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保

证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是

一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。

封锁

就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。

封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。

MVCC

Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。

ACID

数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久

性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction

processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。

None

一些系统不提供原子性。

镜像

数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。

镜像分为同步和异步。

数据存储

指的是数据的物理特性怎样被存储在数据库中。

磁盘 数据被存储在硬盘驱动器里;

GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;

Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;

RAM随机存储器;

插件 可以添加外部插件;

Amazon S3通过Web服务接口提供存储;

BDB:BDB

全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat

Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功

能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。

实现语言

实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。

实现语言有:C, C++, Erlang, Java, Python

特性

考虑下列哪一个特点对你的数据库是最重要的:

持久性

可用性

一致性

分区容忍性

证书类型

下面这些许可证是一个不同的开放源码许可的形式:

GPL:通用公共许可证

BSD:伯克利软件分发

MPL:Mozilla公共许可证

EPL:Eclipse公共许可证

IDPL:最初的开发者的公共许可证

LGPL:较宽松通用公共许可证

存储类型

存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。

关键字:支持get、put和删除操作

按列存储:相对于传统的按行存储,数据集成容易多了

面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。

nosql数据库是什么 具有代表性以key-value的形式存储的

什么是NoSQL

大家有没有听说过“NoSQL”呢?近年,这个词极受关注。看到“NoSQL”这个词,大家可能会误以为是“No!SQL”的缩写,并深感愤怒:“SQL怎么会没有必要了呢?”但实际上,它是“Not Only SQL”的缩写。它的意义是:适用关系型数据库的时候就使用关系型数据库,不适用的时候也没有必要非使用关系型数据库不可,可以考虑使用更加合适的数据存储。

为弥补关系型数据库的不足,各种各样的NoSQL数据库应运而生。

为了更好地了解本书所介绍的NoSQL数据库,对关系型数据库的理解是必不可少的。那么,就让我们先来看一看关系型数据库的历史、分类和特征吧。

关系型数据库简史

1969年,埃德加?6?1弗兰克?6?1科德(Edgar Frank Codd)发表了划时代的论文,首次提出了关系数据模型的概念。但可惜的是,刊登论文的《IBM Research Report》只是IBM公司的内部刊物,因此论文反响平平。1970年,他再次在刊物《Communication of the ACM》上发表了题为“A Relational Model of Data for Large Shared Data banks”(大型共享数据库的关系模型)的论文,终于引起了大家的关注。

科德所提出的关系数据模型的概念成为了现今关系型数据库的基础。当时的关系型数据库由于硬件性能低劣、处理速度过慢而迟迟没有得到实际应用。但之后随着硬件性能的提升,加之使用简单、性能优越等优点,关系型数据库得到了广泛的应用。

通用性及高性能

虽然本书是讲解NoSQL数据库的,但有一个重要的大前提,请大家一定不要误解。这个大前提就是“关系型数据库的性能绝对不低,它具有非常好的通用性和非常高的性能”。毫无疑问,对于绝大多数的应用来说它都是最有效的解决方案。

突出的优势

关系型数据库作为应用广泛的通用型数据库,它的突出优势主要有以下几点:

保持数据的一致性(事务处理)

由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)

可以进行JOIN等复杂查询

存在很多实际成果和专业技术信息(成熟的技术)

这其中,能够保持数据的一致性是关系型数据库的最大优势。在需要严格保证数据一致性和处理完整性的情况下,用关系型数据库是肯定没有错的。但是有些情况不需要JOIN,对上述关系型数据库的优点也没有什么特别需要,这时似乎也就没有必要拘泥于关系型数据库了。

关系型数据库的不足

不擅长的处理

就像之前提到的那样,关系型数据库的性能非常高。但是它毕竟是一个通用型的数据库,并不能完全适应所有的用途。具体来说它并不擅长以下处理:

大量数据的写入处理

为有数据更新的表做索引或表结构(schema)变更

字段不固定时应用

对简单查询需要快速返回结果的处理

。。。。。。

NoSQL数据库

为了弥补关系型数据库的不足(特别是最近几年),NoSQL数据库出现了。关系型数据库应用广泛,能进行事务处理和JOIN等复杂处理。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。

易于数据的分散

如前所述,关系型数据库并不擅长大量数据的写入处理。原本关系型数据库就是以JOIN为前提的,就是说,各个数据之间存在关联是关系型数据库得名的主要原因。为了进行JOIN处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散。相反,NoSQL数据库原本就不支持JOIN处理,各个数据都是独立设计的,很容易把数据分散到多个服务器上。由于数据被分散到了多个服务器上,减少了每个服务器上的数据量,即使要进行大量数据的写入操作,处理起来也更加容易。同理,数据的读入操作当然也同样容易。

提升性能和增大规模

下面说一点题外话,如果想要使服务器能够轻松地处理更大量的数据,那么只有两个选择:一是提升性能,二是增大规模。下面我们来整理一下这两者的不同。

首先,提升性能指的就是通过提升现行服务器自身的性能来提高处理能力。这是非常简单的方法,程序方面也不需要进行变更,但需要一些费用。若要购买性能翻倍的服务器,需要花费的资金往往不只是原来的2倍,可能需要多达5到10倍。这种方法虽然简单,但是成本较高。

另一方面,增大规模指的是使用多台廉价的服务器来提高处理能力。它需要对程序进行变更,但由于使用廉价的服务器,可以控制成本。另外,以后只要依葫芦画瓢增加廉价服务器的数量就可以了。

不对大量数据进行处理的话就没有使用的必要吗?

NoSQL数据库基本上来说为了“使大量数据的写入处理更加容易(让增加服务器数量更容易)”而设计的。但如果不是对大量数据进行操作的话,NoSQL数据库的应用就没有意义吗?

答案是否定的。的确,它在处理大量数据方面很有优势。但实际上NoSQL数据库还有各种各样的特点,如果能够恰当地利用这些特点将会是非常有帮助。具体的例子将会在第2章和第3章进行介绍,这些用途将会让你感受到利用NoSQL的好处。

希望顺畅地对数据进行缓存(Cache)处理

希望对数组类型的数据进行高速处理

希望进行全部保存

多样的NoSQL数据库

NoSQL数据库存在着“key-value存储”、“文档型数据库”、“列存储数据库”等各种各样的种类,每种数据库又包含各自的特点。下一节让我们一起来了解一下NoSQL数据库的种类和特点。

NoSQL数据库是什么

NoSQL说起来简单,但实际上到底有多少种呢?我在提笔的时候,到NoSQL的官方网站上确认了一下,竟然已经有122种了。另外官方网站上也介绍了本书没有涉及到的图形数据库和对象数据库等各个类别。不知不觉间,原来已经出现了这么多的NoSQL数据库啊。

本节将为大家介绍具有代表性的NoSQL数据库。

key-value存储

这是最常见的NoSQL数据库,它的数据是以key-value的形式存储的。虽然它的处理速度非常快,但是基本上只能通过key的完全一致查询获取数据。根据数据的保存方式可以分为临时性、永久性和两者兼具三种。

临时性

memcached属于这种类型。所谓临时性就是 “数据有可能丢失”的意思。memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止的时候,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据(旧数据会丢失)。

在内存中保存数据

可以进行非常快速的保存和读取处理

数据有可能丢失

永久性

Tokyo Tyrant、Flare、ROMA等属于这种类型。和临时性相反,所谓永久性就是“数据不会丢失”的意思。这里的key-value存储不像memcached那样在内存中保存数据,而是把数据保存在硬盘上。与memcached在内存中处理数据比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的。但数据不会丢失是它最大的优势。

在硬盘上保存数据

可以进行非常快速的保存和读取处理(但无法与memcached相比)

数据不会丢失

两者兼具

Redis属于这种类型。Redis有些特殊,临时性和永久性兼具,且集合了临时性key-value存储和永久性key-value存储的优点。Redis首先把数据保存到内存中,在满足特定条件(默认是15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的key发生变更)的时候将数据写入到硬盘中。这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性。这种类型的数据库特别适合于处理数组类型的数据。

同时在内存和硬盘上保存数据

可以进行非常快速的保存和读取处理

保存在硬盘上的数据不会消失(可以恢复)

适合于处理数组类型的数据

面向文档的数据库

MongoDB、CouchDB属于这种类型。它们属于NoSQL数据库,但与key-value存储相异。

不定义表结构

面向文档的数据库具有以下特征:即使不定义表结构,也可以像定义了表结构一样使用。关系型数据库在变更表结构时比较费事,而且为了保持一致性还需修改程序。然而NoSQL数据库则可省去这些麻烦(通常程序都是正确的),确实是方便快捷。

可以使用复杂的查询条件

跟key-value存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据。虽然不具备事务处理和JOIN这些关系型数据库所具有的处理能力,但除此以外的其他处理基本上都能实现。这是非常容易使用的NoSQL数据库。

不需要定义表结构

可以利用复杂的查询条件

面向列的数据库

Cassandra、Hbase、HyperTable属于这种类型。由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引人注目。

面向行的数据库和面向列的数据库

普通的关系型数据库都是以行为单位来存储数据的,擅长进行以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被称为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。

高扩展性

面向列的数据库具有高扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,利用面向列的数据库的优势,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,应用起来十分困难。

高扩展性(特别是写入处理)

应用十分困难

最近,像Twitter和Facebook这样需要对大量数据进行更新和查询的网络服务不断增加,面向列的数据库的优势对其中一些服务是非常有用的,但是由于这与本书所要介绍的内容关系不大,就不进行详细介绍了。

总结:

NoSQL并不是No-SQL,而是指Not Only SQL。

NoSQL的出现是为了弥补SQL数据库因为事务等机制带来的对海量数据、高并发请求的处理的性能上的欠缺。

NoSQL不是为了替代SQL而出现的,它是一种替补方案,而不是解决方案的首选。

绝大多数的NoSQL产品都是基于大内存和高性能随机读写的(比如具有更高性能的固态硬盘阵列),一般的小型企业在选择NoSQL时一定要慎重!不要为了NoSQL而NoSQL,可能会导致花了冤枉钱又耽搁了项目进程。

NoSQL不是万能的,但在大型项目中,你往往需要它!


当前名称:nosql包含什么,NoSQL的含义是什么?
网址分享:http://mswzjz.cn/article/phpcec.html

其他资讯