我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

怎么成为更好的程序员?

这篇文章将为大家详细讲解有关怎么成为更好的程序员?,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

为红岗等地区用户提供了全套网页设计制作服务,及红岗网站建设行业解决方案。主营业务为做网站、成都网站设计、红岗网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

阅读本文并了解如何使用具有功能组合的声明性代码成为更好的程序员。

在许多情况下,具有功能组合的声明性解决方案提供优于传统命令式代码的代码度。阅读本文并了解如何使用具有功能组合的声明性代码成为更好的程序员。

在本文中,我们将仔细研究三个问题示例,并研究两种不同的技术(命令式和声明性)来解决这些问题。

本文中的所有源代码都是开源的,可从获取。最后,我们还将看到本文的学习如何应用于数据库应用程序领域。我们将使用Speedment Stream作为ORM工具,因为它提供了与数据库中的表,视图和连接相对应的标准Java Streams,并支持声明性构造。

实际上有无数个候选示例可用于代码度量评估。

1.问题示例

在本文中,我选择了开发人员在日常工作可能遇到的三个常见问题:

1.1.SumArray

迭代数组并执行计算

1.2.GroupingBy

并行聚合值

1.3.Rest

使用分页实现REST接口

2.解决方案技术

正如本文开头所描述的,我们将使用这两种编码技术解决问题:

2.1 命令式解决方案

一个命令式的解决方案,我们使用带有for循环和显式可变状态的传统代码样例。

2.2 声明式解决方案

声明式解决方案,其中我们组合各种函数以形成解决问题的高阶复合函数,通常使用java.util.stream.Stream或其变体。

3.代码指标

然而,我们的想法是使用SonarQube(此处为SonarQube Community Edition,Version 7.7)将静态代码分析应用于不同的解决方案,以便我们可以为问题/解决方案组合推导出有用且标准化的代码度量标准。然后将比较这些指标。

在本文中,我们将使用以下代码度量标准:

3.1. LOC

“LOC”表示“代码行”,是代码中非空行的数量。

3.2. Statements

是代码中的语句总数。每个代码行上可能有零到多个语句。

3.3. 循环复杂性

表示代码的复杂性,并且是通过源代码程序的线性独立路径数量的定量度量。例如,单个“if”子句在代码中显示两条单独的路径。在维基百科上阅读更多内容。

3.4。认知复杂性

> SonarCube声称:

“认知复杂性改变了使用数学模型来评估软件可维护性的实践。它从Cyclomatic Complexity设定的先例开始,但是使用人为判断来评估结构应该如何计算,并决定应该将什么添加到模型中作为一个整体结果,它产生了方法复杂性分数,这使得程序员对可维护性模型的评估比以前更公平。“

在SonarCube自己的页面上可以阅读更多内容。

通常情况下,需要设想一个解决方案,其中这些指标很小而不是很大。

对于记录,应该注意下面设计的任何解决方案只是解决任何给定问题的一种方法。如果您知道更好的解决方案,请随时通过

4.迭代数组

我们从简单开始。此问题示例的对象是计算int数组中元素的总和,并将结果返回为long。以下接口定义了问题:

public interface SumArray {
    long sum(int[] arr);
}

4.1.命令式解决方案

以下解决方案使用命令式技术实现SumArray问题:

public class SumArrayImperative implements SumArray {
    @Override
    public long sum(int[] arr) {
        long sum = 0;
        for (int i : arr) {
            sum += i;
        }
        return sum;
    }
}

4.2声明式解决方案

这是一个使用声明性技术实现SumArray的解决方案:

public class SumArrayDeclarative implements SumArray {
    @Override
    public long sum(int[] arr) {
        return IntStream.of(arr)
            .mapToLong(i -> i)
            .sum();
    }
}

请注意,IntStream :: sum只返回一个int,因此,我们必须加入中间操作mapToLong()。

4.3.分析

SonarQube提供以下分析:

怎么成为更好的程序员?

怎么成为更好的程序员?

SumArray的代码度量标准如下表所示(通常更低):

技术LOCStatements循环复杂性认知复杂性
Imperative12521
Functional11220

这是它在图表中的值(通常更低):

怎么成为更好的程序员?

5.并行聚合值

这个问题示例的对象是将Person对象分组到不同的桶中,其中每个桶构成一个人的出生年份和一个人工作的国家的唯一组合。对于每个组,应计算平均工资。聚合应使用公共ForkJoin池并行计算。

这是(不可变的)Person类:

public final class Person {
    private final String firstName;
    private final String lastName;
    private final int birthYear;
    private final String country;
    private final double salary;
    public Person(String firstName, 
                  String lastName, 
                  int birthYear, 
                  String country, 
                  double salary) {
        this.firstName = requireNonNull(firstName);
        this.lastName = requireNonNull(lastName);
        this.birthYear = birthYear;
        this.country = requireNonNull(country);
        this.salary = salary;
    }
    public String firstName() { return firstName; }
    public String lastName() { return lastName; }
    public int birthYear() { return birthYear; }
    public String country() { return country; }
    public double salary() { return salary; }
    // equals, hashCode and toString not shown for brevity
}

我们还定义了另一个名为YearCountry的不可变类,把它作为分组键:

public final class YearCountry {
    private final int birthYear;
    private final String country;
    public YearCountry(Person person) {
        this.birthYear = person.birthYear();
        this.country = person.country();
    }
    public int birthYear() { return birthYear; }
    public String country() { return country; }
    // equals, hashCode and toString not shown for brevity
}

定义了这两个类之后,我们现在可以通过接口定义此问题示例:

public interface GroupingBy {
    Map average(Collection persons);
}

5.1.命令式的解决方案

实现GroupingBy示例问题的命令式解决方案并非易事。这是问题的一个解决方案:

public class GroupingByImperative implements GroupingBy {
    @Override
    public Map average(Collection persons) {
        final List personList = new ArrayList<>(persons);
        final int threads = ForkJoinPool.commonPool().getParallelism();
        final int step = personList.size() / threads;
        // Divide the work into smaller work items
        final List> subLists = new ArrayList<>();
        for (int i = 0; i < threads - 1; i++) {
           subLists.add(personList.subList(i * step, (i + 1) * step));
        }
        subLists.add(personList.subList((threads - 1) * step, personList.size()));
        final ConcurrentMap accumulators = new ConcurrentHashMap<>();
        // Submit the work items to the common ForkJoinPool
        final List> futures = new ArrayList<>();
        for (int i = 0; i < threads; i++) {
            final List subList = subLists.get(i);
       futures.add(CompletableFuture.runAsync(() -> average(subList, accumulators)));
        }
        // Wait for completion
        for (int i = 0; i < threads; i++) {
            futures.get(i).join();
        }
        // Construct the result
        final Map result = new HashMap<>();
        accumulators.forEach((k, v) -> result.put(k, v.average()));
        return result;
    }
    private void average(List subList, ConcurrentMap accumulators) {
        for (Person person : subList) {
            final YearCountry bc = new YearCountry(person);
          accumulators.computeIfAbsent(bc, unused -> new AverageAccumulator())
                .add(person.salary());
        }
    }
    private final class AverageAccumulator {
        int count;
        double sum;
        synchronized void add(double term) {
            count++;
            sum += term;
        }
        double average() {
            return sum / count;
        }
    }
}

5.2. 声明式解决方案

这是一个使用声明性构造实现GroupingBy的解决方案:

public class GroupingByDeclarative implements GroupingBy {
    @Override
    public Map average(Collection persons) {
        return persons.parallelStream()
            .collect(
             groupingBy(YearCountry::new, averagingDouble(Person::salary))
            );
    }
}

在上面的代码中,我使用了一些来自Collectors类的静态导入(例如Collectors :: groupingBy)。这不会影响代码指标。

5.3.分析

SonarQube提供以下分析:

怎么成为更好的程序员?

怎么成为更好的程序员?

GroupingBy的代码度量标准如下表所示(通常更低):

技术LOCStatements循环复杂性认知复杂性
Imperative5227114
Functional17110

这是它在图表中的值(通常更低):

怎么成为更好的程序员?

6.实现REST接口

在该示例性问题中,我们将为Person对象提供分页服务。出现在页面上的Persons必须满足某些(任意)条件,并按特定顺序排序。该页面将作为不可修改的Person对象列表返回。

这是一个解决问题的接口:

public interface Rest {

/**

 * Returns an unmodifiable list from the given parameters.
 *
 * @param persons as the raw input list
 * @param predicate to select which elements to include
 * @param order in which to present persons
 * @param page to show. 0 is the first page
 * @return an unmodifiable list from the given parameters
 */

 List page(List persons, 
                   Predicate predicate,
                   Comparator order,
                   int page);
}

页面的大小在名为RestUtil的单独工具程序类中:

public final class RestUtil {
    private RestUtil() {}
    public static final int PAGE_SIZE = 50;
}

6.1.命令式实现方法

public final class RestImperative implements Rest {
    @Override
    public List page(List persons, 
                Predicate predicate, 
                  Comparator order, 
                             int page) {
        final List list = new ArrayList<>();
        for (Person person:persons) {
            if (predicate.test(person)) {
                list.add(person);
            }
        }
        list.sort(order);
        final int from = RestUtil.PAGE_SIZE * page;
        if (list.size() <= from) {
            return Collections.emptyList();
        }
        return unmodifiableList(list.subList(from, Math.min(list.size(), from + RestUtil.PAGE_SIZE)));
    }
}

6.2.声明式解决方法

public final class RestDeclarative implements Rest {
    @Override
    public List page(List persons,
                      Predicate predicate, 
                        Comparator order,
                             int page) {
        return persons.stream()
            .filter(predicate)
            .sorted(order)
            .skip(RestUtil.PAGE_SIZE * (long) page)
            .limit(RestUtil.PAGE_SIZE)
           .collect(collectingAndThen(toList(), Collections::unmodifiableList));
    }
}

6.3.分析

SonarQube提供以下分析:

怎么成为更好的程序员?

怎么成为更好的程序员?

Rest的代码度量标准如下表所示(通常更低):

技术LOCStatements循环复杂性认知复杂性
Imperative271044
Functional21110

这是它在图表中的值(通常更低):

怎么成为更好的程序员?

7.Java 11改进

上面的例子是用Java 8编写的。使用Java 11,我们可以使用LVTI(局部变量类型推断)缩短声明性代码。这会使我们的代码更短,但不会影响代码指标。

@Override
public List page(List persons,
                         Predicate predicate, 
                         Comparator order, 
                         int page) {
    final var list = new ArrayList();
    ...

与Java 8相比,Java 11包含一些新的收集器。例如,Collectors.toUnmodifiableList(),它将使我们的声明性Rest解决方案更短:

public final class RestDeclarative implements Rest {
@Override
public List page(List persons,
                         Predicate predicate, 
                         Comparator order, 
                         int page) {
    return persons.stream()
        .filter(predicate)
        .sorted(order)
        .skip(RestUtil.PAGE_SIZE * (long) page)
        .limit(RestUtil.PAGE_SIZE)
        .collect(toUnmodifiableList());
}

同样,这不会影响代码指标。

8.摘要

三个示例性问题的平均代码度量产生以下结果(通常更低):

怎么成为更好的程序员?

鉴于本文中的输入要求,当我们从命令式构造到声明式构造时,所有代码度量标准都有显着改进。

8.1.在数据库应用程序中使用声明性构造

为了在数据库应用程序中获得声明性构造的好处,我们使用了Speedment Stream。 Speedment Stream是一个基于流的Java ORM工具,可以将任何数据库表/视图/连接转换为Java流,从而允许您在数据库应用程序中应用声明性技能。

您的数据库应用程序代码将变得更好。事实上,针对数据库的Speedment和Spring Boot的分页REST解决方案可能表达如下:

public Stream page(Predicate predicate, 
                     Comparator order, 
                           int page) {
    return persons.stream()
        .filter(predicate)
        .sorted(order)
        .skip(RestUtil.PAGE_SIZE * (long) page)
        .limit(RestUtil.PAGE_SIZE);
}

Manager persons由Speedment提供,并构成数据库表“Person”的句柄,可以通过Spring使用@AutoWired注解。

关于“怎么成为更好的程序员?”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。


分享标题:怎么成为更好的程序员?
网站路径:http://mswzjz.cn/article/pgjgei.html

其他资讯