我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Hadoop和Spark有什么不同

小编给大家分享一下Hadoop和Spark有什么不同,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联建站 - 成都移动机房托管,四川服务器租用,成都服务器租用,四川网通托管,绵阳服务器托管,德阳服务器托管,遂宁服务器托管,绵阳服务器托管,四川云主机,成都云主机,西南云主机,成都移动机房托管,西南服务器托管,四川/成都大带宽,机柜大带宽租用·托管,四川老牌IDC服务商

解决问题的层面不一样

首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施:  它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。

同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到***的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。

两者可合可分

Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapReduce的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapReduce来完成数据的处理。

相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是***的。

以下是从网上摘录的对MapReduce的最简洁明了的解析:

  我们要数图书馆中的所有书。你数1号书架,我数2号书架。这就是“Map”。我们人越多,数书就更快。

现在我们到一起,把所有人的统计数加在一起。这就是“Reduce”。

Spark数据处理速度秒杀MapReduce

Spark因为其处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的:  ”从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…“ Booz Allen  Hamilton的数据科学家Kirk Borne如此解析。

反观Spark,它会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理,将结果写回集群,完成,”  Born说道。Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。

如果需要处理的数据和结果需求大部分情况下是静态的,且你也有耐心等待批处理的完成的话,MapReduce的处理方式也是完全可以接受的。

但如果你需要对流数据进行分析,比如那些来自于工厂的传感器收集回来的数据,又或者说你的应用是需要多重数据处理的,那么你也许更应该使用Spark进行处理。

大部分机器学习算法都是需要多重数据处理的。此外,通常会用到Spark的应用场景有以下方面:实时的市场活动,在线产品推荐,网络安全分析,机器日记监控等。

灾难恢复

两者的灾难恢复方式迥异,但是都很不错。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。

Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed  Dataset)中。“这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能,”Borne指出。

以上是“Hadoop和Spark有什么不同”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


本文名称:Hadoop和Spark有什么不同
本文网址:http://mswzjz.cn/article/pcseji.html

其他资讯