我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Hive抽样的相关知识点详解

这篇文章主要介绍“Hive抽样的相关知识点详解”,在日常操作中,相信很多人在Hive抽样的相关知识点详解问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Hive抽样的相关知识点详解”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

10年的博野网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整博野建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“博野网站设计”,“博野网站推广”以来,每个客户项目都认真落实执行。

抽样

抽样在Hive 中也是比较常用的一种手段,主要用在下面的几个场景中

  1. 一些机器学习的场景中,数仓作为数据的提供方提供样本数据

  2. 数据的计算结果异常或者是指标异常,这个时候如果我们往往需要确认数据源的数据是否本身就有异常

  3. SQL的性能有问题的时候我们也会使用抽样的方法区查看数据,然后进行SQL调优

  4. 在大规模数据量的数据分析及建模任务中,往往针对全量数据进行挖掘分析时会十分耗时和占用集群资源,因此一般情况下只需要抽取一小部分数据进行分析及建模操作。

随机抽样(rand()函数)

我们一般情况下是使用排序函数和rand() 函数来完成随机抽样,limit关键字限制抽样返回的数据,不同之处再有我们使用哪个排序函数呢

利用 rand() 函数进行抽取,这是因为rand() 返回一个0到1之间double 类型的随机值。

下面我们用到了前面我们使用过的一张表大概4603089 条记录,这里我就不给大家准备数据了,大家可以看Hive进阶之数据存储格式来获取测试数据

create table ods_user_bucket_log(      id int,      name string,      city string,      phone string,      acctime string) CLUSTERED BY (`id` ) INTO 5 BUCKETS  row format delimited fields terminated by '\t' stored as textfile; insert overwrite table ods_user_bucket_log select * from ods_user_log;

order by rand()

order by只会启用一个reduce所以比较耗时,至于为什么我们在前面的文章中解释过了Hive语法之常见排序方式

因为order by 是全局的,所以可以做到随机抽样的目的

select * from ods_user_bucket_log order by rand() limit 10;

Hive抽样的相关知识点详解

sort by rand()

sort by 提供了单个 reducer  内的排序功能,但不保证整体有序,这个时候其实不能做到真正的随机的,因为此时的随机是针对分区去的,所以如果我们可以通过控制进入每个分区的数据也是随机的话,那我们就可以做到随机了

select * from ods_user_bucket_log sort by rand() limit 10;

Hive抽样的相关知识点详解

distribute by rand() sort by rand()

rand函数前的distribute和sort关键字可以保证数据在mapper和reducer阶段是随机分布的,这个时候我们也能做到真正的随机,前面我们也介绍过cluster  by 其实基本上是和distribute by sort by 等价的

select * from ods_user_bucket_log distribute by rand() sort by rand() limit 10;

Hive抽样的相关知识点详解

cluster by rand()

cluster by 的功能是 distribute by 和 sort by 的功能相结合,distribute by rand() sort by  rand() 进行了两次随机,cluster by rand() 仅一次随机,所以速度上会比上一种方法快

select * from ods_user_bucket_log cluster by rand() limit 10;

Hive抽样的相关知识点详解

tablesample()抽样函数

分桶抽样(桶表抽样)

hive中分桶其实就是根据某一个字段Hash取模,放入指定数据的桶中,比如将表table按照ID分成100个桶,其算法是hash(id) %  100,这样,hash(id) % 100 = 0的数据被放到第一个桶中,hash(id) % 100 = 1的记录被放到第二个桶中。

分桶抽样语法:

TABLESAMPLE (BUCKET x OUT OF y [ON colname])

其中x是要抽样的桶编号,桶编号从1开始,colname表示抽样的列(也就是按照那个字段分桶),y表示桶的数量。所以表达的意思是按照colname字段分成y桶,抽取其中的第x桶

SELECT     * FROM     ods_user_bucket_log TABLESAMPLE (BUCKET 1 OUT OF 100000 ON rand()) ;

Hive抽样的相关知识点详解

数据块抽样

从 Hive 0.8 开始提供块抽样,使用 tablesample 抽取指定的 行数/比例/大小

SELECT * FROM ods_user_data TABLESAMPLE(1000 ROWS); SELECT * FROM ods_user_data TABLESAMPLE (20 PERCENT);  SELECT * FROM ods_user_data TABLESAMPLE(1M);

按比例抽样 ABLESAMPLE (20 PERCENT)

这将允许 Hive 至少获取 n%的数据

SELECT     * FROM     ods_user_bucket_log TABLESAMPLE(0.0001 PERCENT);

Hive抽样的相关知识点详解

抽取特定大小的数据TABLESAMPLE(100M)

SELECT     * FROM     ods_user_bucket_log TABLESAMPLE(1M);

Hive抽样的相关知识点详解

需要注意的是这里必须是整数M ,以为我尝试零点几的时候报错了

Hive抽样的相关知识点详解

抽取特定的行数 TABLESAMPLE(10 ROWS)

SELECT     * FROM     ods_user_bucket_log TABLESAMPLE(10 rows);

Hive抽样的相关知识点详解

扩展

随机抽样如何实现按比例抽样

前面我们介绍了TABLESAMPLE 可以实现按比例抽样,随机抽样可以借助limit  可以实现抽取特定记录数,其实我们如果对随机抽样进行改进也可以实现按照比例抽样,因为rand()  的函数值是随机的,所以我们可以对其返回值做条件过滤从而实现按照比例的抽样

select     * from(     select         * ,rand() as radix     from         ods_user_bucket_log ) tmp where     radix>=0.0     and radix<=0.0001 ;

Hive抽样的相关知识点详解

分层抽样(分组抽样)

分层抽样,这里可以分为两种,一种是分层抽个数另外一种是分层抽比例

分层抽个数

select     * from (     select         id,ctime,         row_number() over(partition by id order by rand() ) as rn     from         ods_user_log ) tmp where rn<=3 ;

Hive抽样的相关知识点详解

分层按比例的抽样,也可以按照上面的方式实现

总结

  1. TABLESAMPLE 抽样函数本身是不走MR 的所以执行速度很快(注意抽取多少M的时候,只能是整数M)

  2. 随机抽样函数需要走MR的,所以执行性能上没有TABLESAMPLE那么快,而且表达能力有限,只能获取特定的条数(limit n)

  3. 借助row_number实现分层抽样

到此,关于“Hive抽样的相关知识点详解”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


网站题目:Hive抽样的相关知识点详解
分享地址:http://mswzjz.cn/article/jipioe.html

其他资讯