我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

如何用python制作ROC曲线图和计算AUC

ROC介绍

接受者操作特性曲线(receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚惊概率为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线

创新互联建站10多年成都企业网站建设服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,成都企业网站建设及推广,对成都护栏打桩机等多个行业拥有丰富的营销推广经验的网站建设公司。

AUC介绍

AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。

AUC计算

AUC的计算分为下面三个步骤:

1、计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
2、根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
3、将坐标点连成曲线之后计算其曲线下面积,就是AUC的值

直接上python代码

#! -*- coding=utf-8 -*-import pylab as pl
from math import log,exp,sqrt
 
 
evaluate_result="you file path"db = [] #[score,nonclk,clk]pos, neg = 0, 0
with open(evaluate_result,'r') as fs: for line in fs:
 nonclk,clk,score = line.strip().split('\t')
 nonclk = int(nonclk)
 clk = int(clk)
 score = float(score)
 db.append([score,nonclk,clk])
 pos += clk
 neg += nonclk
  
  
 
db = sorted(db, key=lambda x:x[0], reverse=True)
 #计算ROC坐标点xy_arr = []tp, fp = 0., 0. 
for i in range(len(db)):
 tp += db[i][2]
 fp += db[i][1]
 xy_arr.append([fp/neg,tp/pos])
 #计算曲线下面积auc = 0. 
prev_x = 0for x,y in xy_arr: if x != prev_x:
 auc += (x - prev_x) * y
 prev_x = x
 
print "the auc is %s."%auc
 x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen

其格式为:

nonclk \t clk \t score

其中:
1、nonclick:未点击的数据,可以看做负样本的数量
2、clk:点击的数量,可以看做正样本的数量
3、score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量
运行的结果为:

如何用python制作ROC曲线图和计算AUC

如果本机没安装pylab可以直接注释依赖以及画图部分
注意
上面贴的代码:
1、只能计算二分类的结果(至于二分类的标签随便处理)
2、上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计


网页题目:如何用python制作ROC曲线图和计算AUC
文章地址:http://mswzjz.cn/article/jdsohc.html

其他资讯