我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

esprocvspython1增删改查

1. 增加记录:在第二的位置增加一条记录

esproc

成都创新互联公司主营新丰网站建设的网络公司,主营网站建设方案,app软件开发,新丰h5小程序制作搭建,新丰网站营销推广欢迎新丰等地区企业咨询


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4>A3.insert(2,100:EID,"wang":NAME,"lao":SURNAME,"Femal":GENDER,"CA":STATE,date("1999-1-1"):BIRTHDAY,date("2009-3-4"):HIREDATE,"HR":DEPT,3000:SALARY)
5=interval@ms(A1,now())

A4:添加一条记录(“:”前表示字段值,“:”后表示字段),其中2表示第二条记录的位置

A5:计算运算时间(interval():计算时间间隔。@ms表示以毫秒为单位)

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

values=[100,"wang","lao","Femal","CA","1999-01-01","2009-03-04","HR",3000]

line_dic={}

for i in range(len(data.columns)):

    line_dic[data.columns[i]]=values[i]

line = pd.DataFrame(line_dic,index=[1])

data = pd.concat([data.loc[:0],line,data.loc[1:]],ignore_index=True)

print(data)

e=time.time()

print(e-s)

用pd.concat([df1,df2,…,dfn))达到新增记录的目的,dataframe结构的记录是从0开始计数的,如df.loc[1:]表示切片取出第二条以后的所有记录

最后计算出运算耗时。

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查


耗时
esproc0.004
python0.039

 

2. 删除记录:删除第 2 条记录

esproc                     


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4>A3.delete(2)
5=interval@ms(A1,now())

A4:删除第2条记录

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data = data.drop(1)

print(data)

e=time.time()

print(e-s)

利用df.drop()函数删除某条记录

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查

 


耗时
esproc0.003
python0.034

 

3.修改记录:第 5 条记录的 NAME 改为 aaa,SALARY 改为 1000

esproc


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4>A3.modify(5,"aaa":NAME,1000:SALARY)
5=interval@ms(A1,now())

A4:修改第5条记录中的NAME字段的值为“aaa”,修改SALARY字段的值为1000

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data.loc[4,['NAME','SALARY']]=['aaa',1000]

print(data)

e=time.time()

print(e-s)

利用df.loc[]切片取出第5条记录的NAME,SALARY字段并赋值为‘aaa’和1000

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查


耗时
esproc0.003
python0.037

 

4.查询行:查询第 2~10 条记录

esproc


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4=A3(to(2,10))
5=interval@ms(A1,now())

A4:to(m,n):产生m~n的序列,我们用T表示序表,A表示序列。T(A)表示取出序列中包含值的记录,这里表示取出第2~10条记录

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data = data.loc[1:9]

print(data)

e=time.time()

print(e-s)

利用df.loc[]切片取出第2~10条记录

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查


耗时
esproc0.003
python0.023

 

5.增加列:增加一个字段 Fullname

esproc


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4=A3.derive(NAME+""+SURNAME:Fullname)
5=interval@ms(A1,now())

A4:derive()增加字段,这里表示用原来的NAME和SURNAME连接生成Fullname字段。

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data['Fullname'] = data['NAME']+data['SURNAME']

print(data)

e=time.time()

print(e-s)

取出NAME和SURNAME合并成Fullname

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查

 


耗时
esproc0.004
python0.037

 

6.筛选字段:筛选出字段 NAME,SURNAME,STATE,GENDER

esproc


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4=A3.new(NAME,SURNAME,STATE,GENDER)
5=interval@ms(A1,now())

A4:T.new()生成新的序表。这里表示生成包含A3序表中NAME,SURNAME,STATE,GENDER这几个字段的新序表。

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data = data[['NAME','SURNAME','STATE','GENDER']]

print(data)

e=time.time()

print(e-s)

取出NAME,SURNAME,STATE,GENDER这几个字段复制给新的dataframe。

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查


耗时
esproc0.002
python0.022

 

7.修改字段名:修改 EID 为 ID

esproc


A
1=now()
2=file("C:\\Users\\Sean\\Desktop\\esproc_vs_python\\EMPLOYEE.txt")
3=A2.import@t()
4=A3.rename(EID:ID)
5=interval@ms(A1,now())

A4:rename()修改字段名。这里表示将EID修改为ID

python:

import time

import pandas as pd

import datetime

import numpy as np

import random

s=time.time()

data = pd.read_csv("C:/Users/Sean/Desktop/esproc_vs_python/EMPLOYEE.txt",sep="\t")

data.rename(columns={'EID':'ID'},inplace=True)

print(data)

e=time.time()

print(e-s)

利用df.rename()函数修改字段名,将EID修改为ID。参数inplace控制是否修改原来的dataframe结构。

结果:

esproc

esproc vs python 1 增删改查

python

esproc vs python 1 增删改查


耗时
esproc0.002
python0.030

 

小结:我们通过对记录和字段的增、删、改、查这些基本的运算,用esproc和python按照相同的思路,对相同的数据进行同样的处理,在描述效率方面,两者相差并不大,都很方便而且容易上手。

EMPLOYEE.txt


网站名称:esprocvspython1增删改查
文章转载:http://mswzjz.cn/article/ishsoh.html

其他资讯