贝锐智能攀枝花建站部专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

读取、创建和运行多个文件的Python技巧有哪些

本篇内容介绍了“读取、创建和运行多个文件的Python技巧有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

创新互联建站专注于遵义网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供遵义营销型网站建设,遵义网站制作、遵义网页设计、遵义网站官网定制、微信小程序服务,打造遵义网络公司原创品牌,更为您提供遵义网站排名全网营销落地服务。

动机

将代码投入生产时,你很可能需要处理代码文件的组织。读取、创建和运行许多数据文件非常耗时。本文将向你展示如何自动

  • 循环访问目录中的文件

  • 如果不存在嵌套文件,创建它们

  • 使用bash for loop运行一个具有不同输入的文件

这些技巧为我在数据科学项目中节省了很多时间。我希望你也会发现它们有用!

循环访问目录中的文件

如果我们要像这样读取和处理多个数据:

├── data │   ├── data1.csv │   ├── data2.csv │   └── data3.csv └── main.py

我们可以尝试一次手动读取一个文件

import pandas as pd   def process_data(df):    pass  df = pd.read_csv(data1.csv) process_data(df)  df2 = pd.read_csv(data2.csv) process_data(df2)  df3 = pd.read_csv(data3.csv) process_data(df3)

当我们有3个以上的数据时,这是可以的,但不是有效的。如果我们在上面的脚本中只更改了数据,为什么不使用for循环来访问每个数据呢?

下面的脚本允许我们遍历指定目录中的文件

import os import pandas as pd def loop_directory(directory: str):     '''循环目录中的文件'''      for filename in os.listdir(directory):         if filename.endswith(".csv"):             file_directory = os.path.join(directory, filename)             print(file_directory)             pd.read_csv(file_directory)         else:             continue  if __name__=='__main__':     loop_directory('data/')
data/data3.csv data/data2.csv data/data1.csv

以下是对上述脚本的解释

  • for filename in os.listdir(directory):循环访问特定目录中的文件

  • if filename.endswith(".csv"):访问以“.csv”结尾的文件

  • file_directory = os.path.join(directory, filename):连接父目录('data')和目录中的文件。

现在我们可以访问“data”目录中的所有文件!

如果不存在嵌套文件,创建它们

有时,我们可能希望创建嵌套文件来组织代码或模型,这使得将来更容易找到它们。例如,我们可以使用“model 1”来指定特定的特征工程。

在使用模型1时,我们可能需要使用不同类型的机器学习模型来训练我们的数据(“model1/XGBoost”)。

在使用每个机器学习模型时,我们甚至可能希望保存模型的不同版本,因为模型使用的超参数不同。

因此,我们的模型目录看起来像下面这样复杂

model ├── model1 │   ├── NaiveBayes │   └── XGBoost │       ├── version_1 │       └── version_2 └── model2     ├── NaiveBayes     └── XGBoost         ├── version_1         └── version_2

对于我们创建的每个模型,手动创建一个嵌套文件可能需要很多时间。有没有办法让这个过程自动化?是的,os.makedirs(datapath)。

def create_path_if_not_exists(datapath):     '''如果不存在,则创建新文件并保存数据'''      if not os.path.exists(datapath):         os.makedirs(datapath)   if __name__=='__main__': create_path_if_not_exists('model/model1/XGBoost/version_1')

运行上面的文件,你应该会看到嵌套文件'model/model2/XGBoost/version_2'自动创建!

现在你可以将模型或数据保存到新目录中!

import joblib import os   def create_path_if_not_exists(datapath):     '''如果不存在就创建'''      if not os.path.exists(datapath):         os.makedirs(datapath)   if __name__=='__main__':    # 创建目录   model_path = 'model/model2/XGBoost/version_2'   create_path_if_not_exists(model_path)    # 保存   joblib.dump(model, model_path)

Bash for Loop:使用不同的参数运行一个文件

如果我们想用不同的参数运行一个文件呢?例如,我们可能希望使用相同的脚本来使用不同的模型来预测数据。

import joblib  # df = ...  model_path = 'model/model1/XGBoost/version_1' model = joblib.load(model_path) model.predict(df)

如果一个脚本需要很长时间才能运行,而我们有多个模型要运行,那么等待脚本运行完毕然后运行下一个脚本将非常耗时。有没有一种方法可以告诉计算机用一个命令行运行1,2,3,10,然后去做其他的事情。

是的,我们可以用for bash for  loop。首先,我们使用系统argv使我们能够解析命令行参数。如果要覆盖命令行上的配置文件,也可以使用hydra等工具。

import sys import joblib  # df = ...  model_type = sys.argv[1] model_version = sys.argv[2] model_path = f'''model/model1/{model_type}/version_{model_version}''' print('Loading model from', model_path, 'for training')  model = joblib.load(model_path) mode.predict(df)
>>> python train.py XGBoost 1 Loading model from model/model1/XGBoost/version_1 for training

太好了!我们刚刚告诉我们的脚本使用模型XGBoost,version 1来预测命令行上的数据。现在我们可以使用bash循环遍历模型的不同版本。

如果你可以使用Python执行for循环,那么也可以在下面这样的终端上执行

$ for version in 2 3 4 > do > python train.py XGBoost $version > done

键入Enter分隔行

输出:

Loading model from model/model1/XGBoost/version_1 for training Loading model from model/model1/XGBoost/version_2 for training Loading model from model/model1/XGBoost/version_3 for training Loading model from model/model1/XGBoost/version_4 for training

现在,你可以在使用不同模型运行脚本的同时执行其他操作!多方便啊!

“读取、创建和运行多个文件的Python技巧有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


当前标题:读取、创建和运行多个文件的Python技巧有哪些
浏览路径:http://mswzjz.cn/article/iijhps.html

其他资讯