十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇“pytorch模型保存与加载问题怎么解决”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“pytorch模型保存与加载问题怎么解决”文章吧。
在内江等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站建设、成都网站设计 网站设计制作定制网站,公司网站建设,企业网站建设,成都品牌网站建设,全网营销推广,外贸网站建设,内江网站建设费用合理。
torch.save(model,path)
torch.load(path)
torch.save(model.state_dict(),path)
model_state_dic = torch.load(path)
model.load_state_dic(model_state_dic)
模型保存的时候会把模型结构定义文件路径记录下来,加载的时候就会根据路径解析它然后装载参数;当把模型定义文件路径修改以后,使用torch.load(path)就会报错。
把model文件夹修改为models后,再加载就会报错。
import torch
from model.TextRNN import TextRNN
load_model = torch.load('experiment_model_save/textRNN.bin')
print('load_model',load_model)
这种保存完整模型结构和参数的方式,一定不要改动模型定义文件路径。
在多卡机器上有多张显卡0号开始,现在模型在n>=1上的显卡训练保存后,拷贝在单卡机器上加载
import torch
from model.TextRNN import TextRNN
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin')
print('load_model',load_model)
会出现cuda device不匹配的问题——你保存的模代码段 小部件型是使用的cuda1,那么采用torch.load()打开的时候,会默认的去寻找cuda1,然后把模型加载到该设备上。这个时候可以直接使用map_location来解决,把模型加载到CPU上即可。
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin',map_location=torch.device('cpu'))
当用多GPU同时训练模型之后,不管是采用模型结构和参数一起保存还是单独保存模型参数,然后在单卡下加载都会出现问题
a、模型结构和参数一起保然后在加载
torch.distributed.init_process_group(backend='nccl')
模型训练的时候采用上述多进程的方式,所以你在加载的时候也要声明,不然就会报错。
b、单独保存模型参数
model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
state_dict = torch.load('train_model/clip/experiment.pt')
model.load_state_dict(state_dict)
同样会出现问题,不过这里出现的问题是参数字典的key和模型定义的key不一样
原因是多GPU训练下,使用分布式训练的时候会给模型进行一个包装,代码如下:
model = torch.load('train_model/clip/Vtransformers_bert_6_layers_encoder_clip.bin')
print(model)
model.cuda(args.local_rank)
。。。。。。
model = nn.parallel.DistributedDataParallel(model,device_ids=[args.local_rank],find_unused_parameters=True)
print('model',model)
包装前的模型结构:
包装后的模型
在外层多了DistributedDataParallel以及module,所以才会导致在单卡环境下加载模型权重的时候出现权重的keys不一致。
if gpu_count > 1:
torch.save(model.module.state_dict(),save_path)
else:
torch.save(model.state_dict(),save_path)
model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
state_dict = torch.load(save_path)
model.load_state_dict(state_dict)
这样就是比较好的范式,加载不会出错。
以上就是关于“pytorch模型保存与加载问题怎么解决”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。