十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章将为大家详细讲解有关浮点数的表示范围是多少,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
创新新互联,凭借十载的做网站、网站制作经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有1000+案例。做网站建设,选创新互联建站。
浮点数是由符号,阶码和尾数三部分组成,浮点数分为单精度浮点数和双精度浮点数,单精度浮点数的便是范围是-3.4E38~3.4E38,双精度浮点数的范围是-1.79E+308 ~ +1.79E+308
浮点数表示
一个浮点数(Floating Point Number)由三个基本成分构成:符号(Sign)、阶码(Exponent)和尾数(Mantissa)。通常可以用下面的格式来表示浮点数:
S | P | M |
其中S是符号位,P是阶码,M是尾数。
根据IEEE(美国电气和电子工程师学会)754标准中的定义,单精度浮点数是32位(即4字节)的,双精度浮点数是64位(即8字节)的。两者的S、P、M所占的位数以及表示方法由下表可知:
S | P | M | 表示公式 | 偏移量 | |
单精度浮点数 | 1(第31位) | 8(30到23位) | 23(22到0位) | (-1)^S*2(P-127)*1.M | 127 |
双精度浮点数 | 1(第63位) | 11(62到52位) | 52(51到0位) | (-1)^S*2(P-1023)*1.M | 1023 |
其中S是符号位,只有0和1,分别表示正负
P是阶码,通常使用移码表示(移码和补码只有符号位相反,其余都一样。对于正数而言,原码、反码和补码都一样;对于负数而言,补码就是其绝对值的原码全部取反,然后加1)。阶码可以为正数,也可以为负数,为了处理负指数的情况,实际的指数值按要求需要加上一个偏差(Bias)值作为保存在指数域中的值,单精度数的偏差值为127,双精度数的偏差值为1023。例如,单精度的实际指数值0在指数域中将保存为127,而保存在指数域中的64则表示实际的指数值-63,偏差的引入使得对于单精度数,实际可以表达的指数值的范围就变成-127到128之间(包含两端)。
M为尾数,其中单精度数为23位长,双精度数为52位长。IEEE标准要求浮点数必须是规范的。这意味着尾数的小数点左侧必须为1,因此在保存尾数的时候,可以省略小数点前面这个1,从而腾出一个二进制位来保存更多的尾数。这样实际上用23位长的尾数域表达了24位的尾数。例如对于单精度数而言,二进制的1001.101(对应于十进制的9.625)可以表达为1.001101 × 23,所以实际保存在尾数域中的值为00110100000000000000000,即去掉小数点左侧的1,并用0在右侧补齐。
根据标准要求,无法精确保存的值必须向最接近的可保存的值进行舍入,即不足一半则舍,一半以上(包括一半)则进。不过对于二进制浮点数而言,还多一条规矩,就是当需要舍入的值刚好是一半时,不是简单地进,而是在前后两个等距接近的可保存的值中,取其中最后一位有效数字为零者。
据以上分析,IEEE 754标准中定义浮点数的表示范围为:
二进制(Binary) | 十进制(Decimal) | |
单精度浮点数 | ± (2-2^-23) × 2127 | ~ ± 10^38.53 |
双精度浮点数 | ± (2-2^-52) × 21023 | ~ ± 10^308.25 |
浮点数的表示有一定的范围,超出范围时会产生溢出(Flow),一般称大于绝对值最大的数据为上溢(Overflow),小于绝对值最小的数据为下溢(Underflow)。
浮点数的表示约定
单精度浮点数和双精度浮点数都是用IEEE 754标准定义的,其中有一些特殊约定,例如:
1、当P=0,M=0时,表示0。
2、当P=255,M=0时,表示无穷大,用符号位来确定是正无穷大还是负无穷大。
3、当P=255,M≠0时,表示NaN(Not a Number,不是一个数)。
非规范浮点数
当两个绝对值极小的浮点数相减后,其差值的指数可能超出允许范围,最终只能近似为0。为了解决此类问题,IEEE标准中引入了非规范(Denormalized)浮点数,规定当浮点数的指数为允许的最小指数值时,尾数不必是规范化(Normalized)的。有了非规范浮点数,去掉了隐含的尾数位的制约,可以保存绝对值更小的浮点数。而且,由于不再受到隐含尾数域的制约,上述关于极小差值的问题也不存在了,因为所有可以保存的浮点数之间的差值同样可以保存。
根据IEEE 754标准中的定义,规范和非规范浮点数的表示范围可归纳为下表:
规范浮点数 | 非规范浮点数 | 十进制近似范围 | |
单精度浮点数 | ± 2^-149 至 (1-2^-23)*2^-126 | ± 2^-126 至 (2-2^-23)*2^127 | ± ~10^-44.85 至 ~10^38.53 |
双精度浮点数 | ± 2^-1074 至 (1-2^-52)*2^-1022 | ± 2^-1022 至 (2-2^-52)*2^1023 | ± ~10^-323.3 至 ~10^308.3 |
与IEEE 754相关的标准
本文的结论基于IEEE 754标准,另外一个标准是IEEE 854,这个标准是关于十进制浮点数的,但没有规定具体格式,所以很少被采用。另外,从2000年开始,IEEE 754开始修订,被称为IEEE 754R,目的是融合IEEE 754和IEEE 854标准。该标准在浮点格式方面的修订有:1、加入了16位和128位的二进制浮点数格式;2、加入了十进制浮点数格式,采用了IBM公司提出的格式。
关于浮点数的表示范围是多少就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。