我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Java中线程池的执行原理是什么

今天就跟大家聊聊有关Java中线程池的执行原理是什么,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

成都创新互联专注于企业网络营销推广、网站重做改版、都昌网站定制设计、自适应品牌网站建设、html5商城建设、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为都昌等各大城市提供网站开发制作服务。

线程池状态

首先认识两个贯穿线程池代码的参数:

  • runState:线程池运行状态

  • workerCount:工作线程的数量

线程池用一个32位的int来同时保存runState和workerCount,其中高3位是runState,其余29位是workerCount。代码中会反复使用runStateOf和workerCountOf来获取runState和workerCount。

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// 线程池状态
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// ctl操作
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
  • RUNNING:可接收新任务,可执行等待队列里的任务

  • SHUTDOWN:不可接收新任务,可执行等待队列里的任务

  • STOP:不可接收新任务,不可执行等待队列里的任务,并且尝试终止所有在运行任务

  • TIDYING:所有任务已经终止,执行terminated()

  • TERMINATED:terminated()执行完成

线程池状态默认从RUNNING开始流转,到状态TERMINATED结束,中间不需要经过每一种状态,但不能让状态回退。下面是状态变化可能的路径和变化条件:

Java中线程池的执行原理是什么

Worker的创建

线程池是由Worker类负责执行任务,Worker继承了AbstractQueuedSynchronizer,引出了Java并发框架的核心AQS。

AbstractQueuedSynchronizer,简称AQS,是Java并发包里一系列同步工具的基础实现,原理是根据状态位来控制线程的入队阻塞、出队唤醒来处理同步。

AQS不会在这里展开讨论,只需要知道Worker包装了Thread,由它去执行任务。

调用execute将会根据线程池的情况创建Worker,可以归纳出下图四种情况:

Java中线程池的执行原理是什么

public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
//1
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
//2
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
//3
reject(command);
else if (workerCountOf(recheck) == 0)
//4
addWorker(null, false);
}
//5
else if (!addWorker(command, false))
//6
reject(command);
}

标记1对应第一种情况,要留意addWorker传入了core,core=true为corePoolSize,core=false为maximumPoolSize,

新增时需要检查workerCount是否超过允许的最大值。

标记2对应第二种情况,检查线程池是否在运行,并且将任务加入等待队列。标记3再检查一次线程池状态,如果线程池忽然处于非运行状态,那就将等待队列刚加的任务删掉,再交给RejectedExecutionHandler处理。标记4发现没有worker,就先补充一个空任务的worker。

标记5对应第三种情况,等待队列不能再添加任务了,调用addWorker添加一个去处理。

标记6对应第四种情况,addWorker的core传入false,返回调用失败,代表workerCount已经超出maximumPoolSize,那就交给RejectedExecutionHandler处理。

private boolean addWorker(Runnable firstTask, boolean core) {
//1
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;

for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
//2
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}

标记1的第一段代码,目的很简单,是为workerCount加一。至于为什么代码写了这么长,是因为线程池的状态在不断

变化,并发环境下需要保证变量的同步性。外循环判断线程池状态、任务非空和队列非空,内循环使用CAS机制保证workerCount正确地递增。不了解CAS可以看认识非阻塞的同步机制CAS,后续增减workerCount都会使用CAS。

标记2的第二段代码,就比较简单。创建一个新Worker对象,将Worker添加进workers里(Set集合)。成功添加后,启动worker里的线程。在finally里判断线程是否启动成功,不成功直接调用addWorkerFailed。

private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
tryTerminate();
} finally {
mainLock.unlock();
}
}

addWorkerFailed将减少已经递增的workerCount,并且调用tryTerminate结束线程池。

Worker的执行

Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);
}

Worker在构造函数里采用ThreadFactory创建Thread,在run方法里调用了runWorker,看来是真正执行任务的地方。

final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//1
while (task != null || (task = getTask()) != null) {
w.lock();
//2
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//3
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
//4
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false; //5
} finally {
//6
processWorkerExit(w, completedAbruptly);
}
}

标记1进入循环,从getTask获取要执行的任务,直到返回null。这里达到了线程复用的效果,让线程处理多个任务。

标记2是一个比较复杂的判断,保证了线程池在STOP状态下线程是中断的,非STOP状态下线程没有被中断。如果你不了解Java的中断机制,看如何正确结束Java线程这篇。

标记3调用了run方法,真正执行了任务。执行前后提供了beforeExecute和afterExecute两个方法,由子类实现。

标记4里的completedTasks统计worker执行了多少任务,最后累加进completedTaskCount变量,可以调用相应方法返回一些统计信息。

标记5的变量completedAbruptly表示worker是否异常终止,执行到这里代表执行正常,后续的方法需要这个变量。

标记6调用processWorkerExit结束,后面会分析。

接着来看worker从等待队列获取任务的getTask方法:

private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//1
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
//2
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
//3
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}

标记1检查线程池的状态,这里就体现出SHUTDOWN和STOP的区别。如果线程池是SHUTDOWN状态,还会先处理完等待队列的任务;如果是STOP状态,就不再处理等待队列里的任务了。

标记2先看allowCoreThreadTimeOut这个变量,false时worker空闲,也不会结束;true时,如果worker空闲超过keepAliveTime,就会结束。接着是一个很复杂的判断,好难转成文字描述,自己看吧。注意一下wc>maximumPoolSize,出现这种可能是在运行中调用setMaximumPoolSize,还有wc>1,在等待队列非空时,至少保留一个worker。

标记3是从等待队列取任务的逻辑,根据timed分为等待keepAliveTime或者阻塞直到有任务。

最后来看结束worker需要执行的操作:

private void processWorkerExit(Worker w, boolean completedAbruptly) {
//1
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
//2
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);
} finally {
mainLock.unlock();
}
//3
tryTerminate();
int c = ctl.get();
//4
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}

正常情况下,在getTask里就会将workerCount减一。标记1处用变量completedAbruptly判断worker是否异常退出,如果是,需要补充对workerCount的减一。

标记2将worker处理任务的数量累加到总数,并且在集合workers中去除。

标记3尝试终止线程池,后续会研究。

标记4处理线程池还是RUNNING或SHUTDOWN状态时,如果worker是异常结束,那么会直接addWorker。如果allowCoreThreadTimeOut=true,并且等待队列有任务,至少保留一个worker;如果allowCoreThreadTimeOut=false,workerCount不少于corePoolSize。

总结一下worker:线程池启动后,worker在池内创建,包装了提交的Runnable任务并执行,执行完就等待下一个任务,不再需要时就结束。

线程池的关闭

线程池的关闭不是一关了事,worker在池里处于不同状态,必须安排好worker的”后事”,才能真正释放线程池。ThreadPoolExecutor提供两种方法关闭线程池:

  • shutdown:不能再提交任务,已经提交的任务可继续运行;

  • shutdownNow:不能再提交任务,已经提交但未执行的任务不能运行,在运行的任务可继续运行,但会被中断,返回已经提交但未执行的任务。

public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess(); //1 安全策略机制
advanceRunState(SHUTDOWN); //2
interruptIdleWorkers(); //3
onShutdown(); //4 空方法,子类实现
} finally {
mainLock.unlock();
}
tryTerminate(); //5
}

shutdown将线程池切换到SHUTDOWN状态,并调用interruptIdleWorkers请求中断所有空闲的worker,最后调用tryTerminate尝试结束线程池。

public List shutdownNow() {
List tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(STOP);
interruptWorkers();
tasks = drainQueue(); //1
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}

shutdownNow和shutdown类似,将线程池切换为STOP状态,中断目标是所有worker。drainQueue会将等待队列里未执行的任务返回。

interruptIdleWorkers和interruptWorkers实现原理都是遍历workers集合,中断条件符合的worker。

上面的代码多次出现调用tryTerminate,这是一个尝试将线程池切换到TERMINATED状态的方法。

final void tryTerminate() {
for (;;) {
int c = ctl.get();
//1
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
//2
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE);
return;
}
//3
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
terminated();
} finally {
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}

标记1检查线程池状态,下面几种情况,后续操作都没有必要,直接return。

  • RUNNING(还在运行,不能停)

  • TIDYING或TERMINATED(已经没有在运行的worker)

  • SHUTDOWN并且等待队列非空(执行完才能停)

标记2在worker非空的情况下又调用了interruptIdleWorkers,你可能疑惑在shutdown时已经调用过了,为什么又调用,而且每次只中断一个空闲worker?

你需要知道,shutdown时worker可能在执行中,执行完阻塞在队列的take,不知道要结束,所有要补充调用interruptIdleWorkers。每次只中断一个是因为processWorkerExit时,还会执行tryTerminate,自动中断下一个空闲的worker。

标记3是最终的状态切换。线程池会先进入TIDYING状态,再进入TERMINATED状态,中间提供了terminated这个空方法供子类实现。

调用关闭线程池方法后,需要等待线程池切换到TERMINATED状态。awaitTermination检查限定时间内线程池是否进入TERMINATED状态,代码如下:

public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (;;) {
if (runStateAtLeast(ctl.get(), TERMINATED))
return true;
if (nanos <= 0)
return false;
nanos = termination.awaitNanos(nanos);
}
} finally {
mainLock.unlock();
}
}

看完上述内容,你们对Java中线程池的执行原理是什么有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


网站题目:Java中线程池的执行原理是什么
文章出自:http://mswzjz.cn/article/igpcse.html

其他资讯