十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
有
创新互联建站于2013年成立,先为鹿泉等服务建站,鹿泉等地企业,进行企业商务咨询服务。为鹿泉企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
当然有,这就是Python函数图像工具(EXE)。 本程序运用Python中最令人喜爱的数据处理工具numpy和超强的图像库matplotlib,实现13种不同类别函数的分类图像整理,展示图像均可以保存为图片的形式,具备拖动、放大等功能
cv2.imshow("left", img_left)
filename3=str(number)+'n3'+'.jpg' #打印第number张图片+增值方式+保存类型
cv2.imwrite(savedpath + filename3, img_left)
"""
# 数据增强实现
"""
import cv2
import numpy as np
import os
# 图像平移
def img_translation(image):
# 图像平移 下、上、右、左平移
M = np.float32([[1, 0, 0], [0, 1, 100]])
img_down = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
M = np.float32([[1, 0, 0], [0, 1, -100]])
img_up = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
M = np.float32([[1, 0, 100], [0, 1, 0]])
img_right = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
M = np.float32([[1, 0, -100], [0, 1, 0]])
img_left = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))
# 保存图片,需要保存上述的哪一图片,就在cv2.imwrite()中,将哪一图片名放入。
# filename='xxx' +'.jpeg'
# cv2.imwrite(savedpath + filename, img_left)
# 显示图形
cv2.imshow("down", img_down)
filename0=str(number)+'n0'+'.jpg'
cv2.imwrite(savedpath + filename0, img_down)
cv2.imshow("up", img_up)
filename1=str(number)+'n1'+'.jpg'
cv2.imwrite(savedpath + filename1, img_up)
cv2.imshow("right", img_right)
filename2=str(number)+'n2'+'.jpg'
cv2.imwrite(savedpath + filename2, img_right)
cv2.imshow("left", img_left)
filename3=str(number)+'n3'+'.jpg'
cv2.imwrite(savedpath + filename3, img_left)
# 图像缩放
def img_scale(image):
result = cv2.resize(image, (224, 224))
cv2.imshow("scale", result)
filename=str(number)+'n5'+'.jpg'
cv2.imwrite(savedpath + filename, result)
# 图像翻转
def img_flip(image):
# 0以X轴为对称轴翻转,0以Y轴为对称轴翻转, 0X轴Y轴翻转
horizontally = cv2.flip(image, 0) # 水平镜像
vertically = cv2.flip(image, 1) # 垂直镜像
hv = cv2.flip(image, -1) # 水平垂直镜像
# 显示图形
cv2.imshow("Horizontally", horizontally)
filename1=str(number)+'n6'+'.jpg'
cv2.imwrite(savedpath + filename1, horizontally)
cv2.imshow("Vertically", vertically)
filename2=str(number)+'n7'+'.jpg'
cv2.imwrite(savedpath + filename2, vertically)
cv2.imshow("Horizontally Vertically", hv)
filename3=str(number)+'n8'+'.jpg'
cv2.imwrite(savedpath + filename3, hv)
# 图像旋转
def img_rotation(image):
# 原图的高、宽 以及通道数
rows, cols, channel = image.shape
# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 30, 1)
# 参数:原始图像 旋转参数 元素图像宽高
rotated = cv2.warpAffine(image, M, (cols, rows))
# 显示图像
cv2.imshow("rotated", rotated)
filename1=str(number)+'n9'+'.jpg'
cv2.imwrite(savedpath + filename1, rotated)
#选装60度
W = cv2.getRotationMatrix2D((cols / 2, rows / 2), 60, 1)
# 参数:原始图像 旋转参数 元素图像宽高
rotated1 = cv2.warpAffine(image, W, (cols, rows))
cv2.imshow("rotated", rotated)
filename2=str(number)+'n12'+'.jpg'
cv2.imwrite(savedpath + filename2, rotated1)
#选装145度
W = cv2.getRotationMatrix2D((cols / 2, rows / 2), 60, 1)
# 参数:原始图像 旋转参数 元素图像宽高
rotated2 = cv2.warpAffine(image, W, (cols, rows))
cv2.imshow("rotated", rotated)
filename3=str(number)+'n13'+'.jpg'
cv2.imwrite(savedpath + filename3, rotated2)
# 图像加噪
def img_noise(image, mean=0, var=0.001):
'''
添加高斯噪声
mean : 均值
var : 方差
'''
image = np.array(image / 255, dtype=float)
noise = np.random.normal(mean, var ** 0.5, image.shape)
out = image + noise
if out.min() 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0)
out = np.uint8(out * 255)
cv2.imshow("noise", out)
filename3=str(number)+'n10'+'.jpg'
cv2.imwrite(savedpath + filename3, out)
# 图像亮度调节
def img_brightness(image):
contrast = 1 # 对比度
brightness = 100 # 亮度
pic_turn = cv2.addWeighted(image, contrast, image, 0, brightness)
# cv2.addWeighted(对象,对比度,对象,对比度)
'''cv2.addWeighted()实现的是图像透明度的改变与图像的叠加'''
cv2.imshow('bright', pic_turn) # 显示图片
filename3=str(number)+'n11'+'.jpg'
cv2.imwrite(savedpath + filename3, pic_turn)
if __name__ == '__main__':
i = 0
path = '../Data/'
print(path)
savedpath = './result_new/'
filelist = os.listdir(path)
total_num = len(filelist)
for item in filelist:
number = i + 1
i = number
print("######")
print("打印到第",i,"张图片")
src = cv2.imread(path + item)
img_translation(src)
img_scale(src)
img_flip(src)
img_rotation(src)
img_noise(src)
img_brightness(src)
cv2.waitKey(0)
cv2.destroyAllWindows()
代码较为繁琐,有空之后进行优化
输出结果
1,xlable,ylable设置x,y轴的标题文字。
2,title设置标题。
3,xlim,ylim设置x,y轴显示范围。
plt.show()显示绘图窗口,通常情况下,show()会阻碍程序运行,带-wthread等参数的环境下,窗口不会关闭。
plt.saveFig()保存图像。
面向对象绘图
1,当前图表和子图可以用gcf(),gca()获得。
subplot()绘制包含多个图表的子图。
configure subplots,可调节子图与图表边框距离。
可以通过修改配置文件更改对象属性。
图标显示中文
1,在程序中直接指定字体。
2, 在程序开始修改配置字典reParams.
3,修改配置文件。
Artist对象
1,图标的绘制领域。
2,如何在FigureCanvas对象上绘图。
3,如何使用Renderer在FigureCanvas对象上绘图。
FigureCanvas和Render处理底层图像操作,Artist处理高层结构。
分为简单对象和容器对象,简单的Aritist是标准的绘图元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器类型包含许多简单的的 Aritist对象,使他们构成一个整体,例如Axis,Axes,Figure等。
直接创建Artist对象进项绘图操作步奏:
1,创建Figure对象(通过figure()函数,会进行许多初始化操作,不建议直接创建。)
2,为Figure对象创建一个或多个Axes对象。
3,调用Axes对象的方法创建各类简单的Artist对象。
Figure容器
如何找到指定的Artist对象。
1,可调用add_subplot()和add_axes()方法向图表添加子图。
2,可使用for循环添加栅格。
3,可通过transform修改坐标原点。
Axes容器
1,patch修改背景。
2,包含坐标轴,坐标网格,刻度标签,坐标轴标题等内容。
3,get_ticklabels(),,get-ticklines获得刻度标签和刻度线。
1,可对曲线进行插值。
2,fill_between()绘制交点。
3,坐标变换。
4,绘制阴影。
5,添加注释。
1,绘制直方图的函数是
2,箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位
数、中位数、第三四分位数与最大值来描述数据的一种方法,它可以粗略地看出数据是否具有对称性以及分
布的分散程度等信息,特别可以用于对几个样本的比较。
3,饼图就是把一个圆盘按所需表达变量的观察数划分为若干份,每一份的角度(即面积)等价于每个观察
值的大小。
4,散点图
5,QQ图
低层绘图函数
类似于barplot(),dotchart()和plot()这样的函数采用低层的绘图函数来画线和点,来表达它们在页面上放置的位置以及其他各种特征。
在这一节中,我们会描述一些低层的绘图函数,用户也可以调用这些函数用于绘图。首先我们先讲一下R怎么描述一个页面;然后我们讲怎么在页面上添加点,线和文字;最后讲一下怎么修改一些基本的图形。
绘图区域与边界
R在绘图时,将显示区域划分为几个部分。绘制区域显示了根据数据描绘出来的图像,在此区域内R根据数据选择一个坐标系,通过显示出来的坐标轴可以看到R使用的坐标系。在绘制区域之外是边沿区,从底部开始按顺时针方向分别用数字1到4表示。文字和标签通常显示在边沿区域内,按照从内到外的行数先后显示。
添加对象
在绘制的图像上还可以继续添加若干对象,下面是几个有用的函数,以及对其功能的说明。
•points(x, y, ...),添加点
•lines(x, y, ...),添加线段
•text(x, y, labels, ...),添加文字
•abline(a, b, ...),添加直线y=a+bx
•abline(h=y, ...),添加水平线
•abline(v=x, ...),添加垂直线
•polygon(x, y, ...),添加一个闭合的多边形
•segments(x0, y0, x1, y1, ...),画线段
•arrows(x0, y0, x1, y1, ...),画箭头
•symbols(x, y, ...),添加各种符号
•legend(x, y, legend, ...),添加图列说明