我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python虚拟函数,python vmware

python是虚拟机吗

python并不是虚拟机,运行python文件的是python解释器。python解释器的工作原理如下:

创新互联公司专注于集安网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供集安营销型网站建设,集安网站制作、集安网页设计、集安网站官网定制、小程序开发服务,打造集安网络公司原创品牌,更为您提供集安网站排名全网营销落地服务。

一、过程概述

1、python先把代码(.py文件)编译成字节码,交给字节码虚拟机,然后虚拟机会从编译得到的PyCodeObject对象中一条一条执行字节码指令,并在当前的上下文环境中执行这条字节码指令,从而完成程序的执行。Python虚拟机实际上是在模拟操作中执行文件的过程。PyCodeObject对象中包含了字节码指令以及程序的所有静态信息,但没有包含程序运行时的动态信息——执行环境(PyFrameObject)

2、字节码在python虚拟机程序里对应的是PyCodeObject对象;

.pyc文件是字节码在磁盘上的表现形式。

3、从整体上看:OS中执行程序离不开两个概念:进程和线程。python中模拟了这两个概念,模拟进程和线程的分别是PyInterpreterState和PyTreadState。即:每个PyThreadState都对应着一个帧栈,python虚拟机在多个线程上切换。当python虚拟机开始执行时,它会先进行一些初始化操作,最后进入PyEval_EvalFramEx函数,它的作用是不断读取编译好的字节码,并一条一条执行,类似CPU执行指令的过程。函数内部主要是一个switch结构,根据字节码的不同执行不同的代码。

推荐学习《python教程》

二、关于.pyc文件

PyCodeObject对象的创建时机是模块加载的时候,即import。

1、执行 python test.py 会对test.py进行编译成字节码并解释执行,但不会生成test.pyc

2、如果test.py中加载了其他模块,如import urllib2,那么python会对urllib2.py进行编译成字节码,生成urllib2.pyc,然后对字节码解释执行。

3、如果想生成test.pyc,我们可以使用python内置模块py_compile来编译。

也可以执行命令 python -m test.py 这样,就生成了test.pyc

4、加载模块时,如果同时存在.py和.pyc,python会使用.pyc运行,如果.pyc的编译时间早于.py的时间,则重新编译.py,并更新.pyc文件。

如何用python实现含有虚拟自变量的回归

利用python进行线性回归

理解什么是线性回归

线性回归也被称为最小二乘法回归(Linear Regression, also called Ordinary Least-Squares (OLS) Regression)。它的数学模型是这样的:

y = a+ b* x+e

其中,a 被称为常数项或截距;b 被称为模型的回归系数或斜率;e 为误差项。a 和 b 是模型的参数。

当然,模型的参数只能从样本数据中估计出来:

y'= a' + b'* x

我们的目标是选择合适的参数,让这一线性模型最好地拟合观测值。拟合程度越高,模型越好。

那么,接下来的问题就是,我们如何判断拟合的质量呢?

这一线性模型可以用二维平面上的一条直线来表示,被称为回归线。

模型的拟合程度越高,也即意味着样本点围绕回归线越紧密。

如何计算样本点与回归线之间的紧密程度呢?

高斯和勒让德找到的方法是:被选择的参数,应该使算出来的回归线与观测值之差的平房和最小。用函数表示为:

这被称为最小二乘法。最小二乘法的原理是这样的:当预测值和实际值距离的平方和最小时,就选定模型中的两个参数(a 和 b)。这一模型并不一定反映解释变量和反应变量真实的关系。但它的计算成本低;相比复杂模型更容易解释。

模型估计出来后,我们要回答的问题是:

我们的模型拟合程度如何?或者说,这个模型对因变量的解释力如何?(R2)

整个模型是否能显著预测因变量的变化?(F 检验)

每个自变量是否能显著预测因变量的变化?(t 检验)

首先回答第一个问题。为了评估模型的拟合程度如何,我们必须有一个可以比较的基线模型。

如果让你预测一个人的体重是多少?在没有任何额外信息的情况下,你可能会用平均值来预测,尽管会存在一定误差,但总比瞎猜好。

现在,如果你知道他的身高信息,你的预测值肯定与平均值不一样。额外信息相比平均值更能准确地预测被预测的变量的能力,就代表模型的解释力大小。

上图中,SSA 代表由自变量 x 引起的 y 的离差平方和,即回归平方和,代表回归模型的解释力;SSE 代表由随机因素引起的 y 的离差平方和,即剩余平方和,代表回归模型未能解释的部分;SST 为总的离差平方和,即我们仅凭 y 的平均值去估计 y 时所产生的误差。

用模型能够解释的变异除以总的变异就是模型的拟合程度:

R2=SSA/SST=1-SSE

R2(R 的平方)也被称为决定系数或判定系数。

第二个问题,我们的模型是否显著预测了 y 的变化?

假设 y 与 x 的线性关系不明显,那么 SSA 相对 SSE 占有较大的比例的概率则越小。换句话说,在 y 与 x 无线性关系的前提下,SSA 相对 SSE 的占比越高的概率是越小的,这会呈现一定的概率分布。统计学家告诉我们它满足 F 分布,就像这样:

如果 SSA 相对 SSE 占比较大的情况出现了,比如根据 F 分布,这个值出现的概率小于 5%。那么,我们最好是拒绝 y 与 x 线性关系不显著的原始假设,认为二者存在显著的线性关系较为合适。

第三个问题,每个自变量是否能显著预测因变量的变化?换句话说,回归系数是否显著?

回归系数的显著性检验是围绕回归系数的抽样分布(t 分布)来进行的,推断过程类似于整个模型的检验过程,不赘言。

实际上,对于只有一个自变量的一元线性模型,模型的显著性检验和回归系数的检验是一致的,但对于多元线性模型来说,二者就不能等价了。

利用 statsmodels 进行最小二乘回归

#导入相应模块

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import statsmodels.api as sm

#将数据导入 pandas 的 dataframe 对象,第一列(年份)作为行标签

In [4]: df=pd.read_csv('/Users/xiangzhendong/Downloads/vincentarelbundock-Rdatasets-1218370/csv/datasets/longley.csv', index_col=0)

#查看头部数据

In [5]: df.head()

Out[5]:

GNP.deflator      GNP  Unemployed  Armed.Forces  Population  Year  \

1947          83.0  234.289       235.6         159.0     107.608  1947

1948          88.5  259.426       232.5         145.6     108.632  1948

1949          88.2  258.054       368.2         161.6     109.773  1949

1950          89.5  284.599       335.1         165.0     110.929  1950

1951          96.2  328.975       209.9         309.9     112.075  1951

Employed

1947    60.323

1948    61.122

1949    60.171

1950    61.187

1951    63.221

#设置预测变量和结果变量,用 GNP 预测 Employed

In [6]: y=df.Employed #结果变量

In [7]: X=df.GNP #预测变量

#为模型增加常数项,即回归线在 y 轴上的截距

In [8]: X=sm.add_constant(X)

#执行最小二乘回归,X 可以是 numpy array 或 pandas dataframe(行数等于数据点个数,列数为预测变量个数),y 可以是一维数组(numpy array)或 pandas series

In [10]: est=sm.OLS(y,X)

使用 OLS 对象的 fit() 方法来进行模型拟合

In [11]: est=est.fit()

#查看模型拟合的结果

In [12]: est.summary()

Out[12]:

#查看最终模型的参数

In [13]: est.params

Out[13]:

const    51.843590

GNP       0.034752

dtype: float64

#选择 100 个从最小值到最大值平均分布(equally spaced)的数据点

In [14]: X_prime=np.linspace(X.GNP.min(), X.GNP.max(),100)[:,np.newaxis]

In [15]: X_prime=sm.add_constant(X_prime)

#计算预测值

In [16]: y_hat=est.predict(X_prime)

In [17]: plt.scatter(X.GNP, y, alpha=0.3) #画出原始数据

#分别给 x 轴和 y 轴命名

In [18]: plt.xlabel("Gross National Product")

In [19]: plt.ylabel("Total Employment")

In [20]: plt.plot(X_prime[:,1], y_hat, 'r', alpha=0.9) #添加回归线,红色

多元线性回归(预测变量不止一个)

我们用一条直线来描述一元线性模型中预测变量和结果变量的关系,而在多元回归中,我们将用一个多维(p)空间来拟合多个预测变量。下面表现了两个预测变量的三维图形:商品的销量以及在电视和广播两种不同媒介的广告预算。

数学模型是:

Sales = beta_0 + beta_1*TV + beta_2*Radio

图中,白色的数据点是平面上的点,黑色的数据点事平面下的点。平面的颜色是由对应的商品销量的高低决定的,高是红色,低是蓝色。

利用 statsmodels 进行多元线性回归

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import statsmodels.api as sm

In [4]: df_adv=pd.read_csv('g.csv',index_col=0)

In [6]: X=df_adv[['TV','Radio']]

In [7]: y=df_adv['Sales']

In [8]: df_adv.head()

Out[8]:

TV  Radio  Newspaper  Sales

1  230.1   37.8       69.2   22.1

2   44.5   39.3       45.1   10.4

3   17.2   45.9       69.3    9.3

4  151.5   41.3       58.5   18.5

5  180.8   10.8       58.4   12.9

In [9]: X=sm.add_constant(X)

In [10]: est=sm.OLS(y,X).fit()

In [11]: est.summary()

Out[11]:

你也可以使用 statsmodels 的 formula 模块来建立多元回归模型

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Sales ~ TV + Radio',data=df_adv).fit()

处理分类变量

性别或地域都属于分类变量。

In [15]: df= pd.read_csv('httd.edu/~tibs/ElemStatLearn/datasets/SAheart.data', index_col=0)

In [16]: X=df.copy()

利用 dataframe 的 pop 方法将 chd 列单独提取出来

In [17]: y=X.pop('chd')

In [18]: df.head()

Out[18]:

sbp  tobacco   ldl  adiposity  famhist  typea  obesity  alcohol  \

row.names

1          160    12.00  5.73      23.11  Present     49    25.30    97.20

2          144     0.01  4.41      28.61   Absent     55    28.87     2.06

3          118     0.08  3.48      32.28  Present     52    29.14     3.81

4          170     7.50  6.41      38.03  Present     51    31.99    24.26

5          134    13.60  3.50      27.78  Present     60    25.99    57.34

age  chd

row.names

1           52    1

2           63    1

3           46    0

4           58    1

5           49    1

In [19]: y.groupby(X.famhist).mean()

Out[19]:

famhist

Absent     0.237037

Present    0.500000

Name: chd, dtype: float64

In [20]: import statsmodels.formula.api as smf

In [21]: df['famhist_ord']=pd.Categorical(df.famhist).labels

In [22]: est=smf.ols(formula="chd ~ famhist_ord", data=df).fit()

分类变量的编码方式有许多,其中一种编码方式是虚拟变量编码(dummy-encoding),就是把一个 k 个水平的分类变量编码成 k-1 个二分变量。在 statsmodels 中使用 C 函数实现。

In [24]: est=smf.ols(formula="chd ~ C(famhist)", data=df).fit()

In [26]: est.summary()

Out[26]:

处理交互作用

随着教育年限(education)的增长,薪酬 (wage) 会增加吗?这种影响对男性和女性而言是一样的吗?

这里的问题就涉及性别与教育年限的交互作用。

换言之,教育年限对薪酬的影响是男女有别的。

#导入相关模块

In [1]: import pandas as pd

In [2]: import numpy as np

In [4]: import statsmodels.api as sm

#导入数据,存入 dataframe 对象

In [5]: df=pd.read_csv('/Users/xiangzhendong/Downloads/pydatafromweb/wages.csv')

In [6]: df[['Wage','Education','Sex']].tail()

Out[6]:

Wage  Education  Sex

529  11.36         18    0

530   6.10         12    1

531  23.25         17    1

532  19.88         12    0

533  15.38         16    0

由于性别是一个二分变量,我们可以绘制两条回归线,一条是 sex=0(男性),一条是 sex=1(女性)

#绘制散点图

In [7]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [9]: plt.xlabel('education')

In [10]: plt.ylabel('wage')

#linspace 的作用是生成从最小到最大的均匀分布的 n 个数

In [17]: education_linspace=np.linspace(df.Education.min(), df.Education.max(),100)

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Wage ~ Education + Sex', data=df).fit()

In [18]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]0, 'r')

In [19]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]1, 'g')

以上两条线是平行的。这是因为分类变量只影响回归线的截距,不影响斜率。

接下来我们可以为回归模型增加交互项来探索交互效应。也就是说,对于两个类别,回归线的斜率是不一样的。

In [32]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [33]: plt.xlabel('education')

In [34]: plt.ylabel('wage')

#使用*代表我们的回归模型中除了交互效应,也包括两个变量的主效应;如果只想看交互效应,可以用:代替,但通常不会只看交互效应

In [35]: est=smf.ols(formula='Wage ~ Sex*Education', data=df).fit()

In [36]: plt.plot(education_linspace, est.params[0]+est.params[1]0+est.params[2]education_linspace+est.params[3]0education_linspace, 'r')

In [37]: plt.plot(education_linspace, est.params[0]+est.params[1]1+est.params[2]education_linspace+est.params[3]1education_linspace, 'g')

参考资料:

DataRobot | Ordinary Least Squares in Python

DataRoboe | Multiple Regression using Statsmodels

AnalyticsVidhya | 7 Types of Regression Techniques you should know!

python 中os.system()的用法?

os模块中的system()函数可以方便地运行其他程序或者脚本。

语法如下:os.system(command)

其参数含义如下所示:

command  要执行的命令,相当于在Windows的cmd窗口中输入的命令。如果要向程序或者脚本传递参数,可以使用空格分隔程序及多个参数。

扩展资料

Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机)来执行这些编译好的byte code。这种机制的基本思想跟Java,.NET是一致的。然而,Python Virtual Machine与Java或.NET的Virtual Machine不同的是,Python的Virtual Machine是一种更高级的Virtual Machine。

这里的高级并不是通常意义上的高级,不是说Python的Virtual Machine比Java或.NET的功能更强大,而是说和Java 或.NET相比,Python的Virtual Machine距离真实机器的距离更远。或者可以这么说,Python的Virtual Machine是一种抽象层次更高的Virtual Machine。

基于C的Python编译出的字节码文件,通常是.pyc格式。

除此之外,Python还可以以交互模式运行,比如主流操作系统Unix/Linux、Mac、Windows都可以直接在命令模式下直接运行Python交互环境。直接下达操作指令即可实现交互操作。

参考资料来源:51CTO.com:使用os.system函数运行其他程序

python自学以后该怎么做

学习Python,如果不是系统学习,自学总会遇到很多弯路,但是看到书以后,还是会从头看到尾,但是不知道重点在哪里

学习方法:

先确定学习的思想

确定学习的方向

确定学习的重点

1.确定学习思想

学习编程,学的不是代码,代码可以给你,但是给你了,你看得懂吗? 我们学的是一个编程思路

如我们要爬12306,我们要有一个思路

制定爬取内容

选取目标

准备环境,上面就提前说了,因为这个本来就是在搞爬虫,所以...

分析该网站的html结构,得到url

爬取数据

分析数据

封装数据(组装数据),弄成自己想要的样子

所以思路是最重要的,我们有了思路,那么我们操作起来,就相对来说,毕竟简单了。

2.确定学习方向

Python的就业方向里面有很多值得选择,如:web、爬虫、运维、黑客、人工智能等。

简析:

Python web:主要用于后端

爬虫:数据挖掘

运维:主要是涨工资和满足公司要求

黑客、人工智能:不推荐,一旦决定了,就要一直走下去,没有回头路,当然一旦成功,金钱大把大把

3.确定学习重点

入门学习,重点:

Python语言的控制结构

列表、字典、元组

字符串处理

变量声明和定义

函数

面向对象编程:封装、继承、虚拟函数、接口、多继承、模板

面向对象编程:异常处理

确定放向后(以目前最热门的web、爬虫为例):

1.web

重点学习:

1.HTML、css、JS

2.Django、Flask、Tornado三个主流开发框架

3.协程、异步线程

2.爬虫

重点学习

1.并发编程

2.破解反扒技术

3.APP的抓取

4.分布式爬虫

零基础如何学习Python?

第一:找到一个好的教程

可以买本书,跟着书学习,书上的例子可以跟着写,课后的习题尽量做。没有买书的朋友,可以从网上找教程,在浩瀚如烟的互联网上,没有你找不到的,只有你想不到的。

彻底0基础的朋友,建议先确定自己是否对Python感兴趣,兴趣是好的老师,只有在兴趣的驱动下你才能坚定不移克服学习上遇到的困难。课课家Python从入门到精通视频教程

第二,循序渐进

既然是零基础,就不要着急了。你需要做的是,盯住一个教程,从基础语法,变量类型开始学起,接下来是运算符,条件语句,循环,字符串,list,元组,字典,日期时间,文件读写,函数,模块,异常处理。

第三,照葫芦画瓢

这个过程中,如果遇到不懂的,不要深究。不懂就问,不会就敲。能看懂多少就懂多少,重要的是按照教程编写代码,你看不懂的,可能照着例子写了,就懂了。再者,有许多知识,其实对非计算机行业的人来说,过于专业了,你也没有必要懂。

第四,贵在坚持

我不建议大家花费太多的时间在Python学习上,你每天能用30分钟看看教程,然后照着例子写代码就可以了,根本来讲,你要学习的不是Python,而是一种思维模式,这种思维模式的建立需要反复的练习,短期内用力过猛是无济于事的。

你永远不能叫醒一个装睡的人,也永远帮不了一个不努力的人。任何工作要做到优秀都需要不断的付出和学习,想要成为一名优秀的程序员也是一样,如果你热爱Python,热爱这门语言就应该持续的走下去,人真的去努力。

python 问题 reset_index(drop=True

reset_index用来重置索引,因为有时候对dataframe做处理后索引可能是乱的。

drop=True就是把原来的索引index列去掉,重置index。

drop=False就是保留原来的索引,添加重置的index。

两者的区别就是有没有把原来的index去掉。

此外还有一个参数:inplace

inplace=False(默认)表示原数组不变,对数据进行修改之后结果给新的数组。

inplace=True表示直接在原数组上对数据进行修改。

扩展资料:

Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机)来执行这些编译好的byte code。这种机制的基本思想跟Java,NET是一致的。然而,Python Virtual Machine与Java或.NET的Virtual Machine不同的是,Python的Virtual Machine是一种更高级的Virtual Machine。

参考资料来源:百度百科-Python


新闻标题:python虚拟函数,python vmware
当前路径:http://mswzjz.cn/article/hshchd.html

其他资讯