十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
python有个符号计算的库叫sympy,可以直接用这个库求导数然后解导数=0的方程,参考代码如下:
为万安等地区用户提供了全套网页设计制作服务,及万安网站建设行业解决方案。主营业务为做网站、成都网站设计、万安网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
from sympy import *
x = symbols('x')
y = (x-3)**2+2*sin(x)-3*x+1
eq = diff(y, x)
solve(eq, x)
def max(a,b):
return a if a=b else b
a,b,c,d=14,9,2,6
max(a,b)
14
max(a,max(b,c))
14
max(max(a,b),max(c,d))
14
祝你成功!
(1)由表中可知f(x)在(0,2]为减函数,
[2,+∞)为增函数,并且当x=2时,f(x)min=5.
(2)证明:设0<x1<x2≤2,
因为f(x1)-f(x2)=2x1+
8
x1
-3-(2x2+
8
x2
-3)=2(x1-x2)+
8(x2?x1)
x1x2
=
2(x1?x2)(x1x2?4)
x1x2
,
因为0<x1<x2≤2,所以x1-x2<0,0<x1x2<4,即x1x2-4<0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以f(x)在(0,2]为减函数.
(3)由(2)可证:函数f(x)=2x+
8
x
-3在区间(0,2]上单调递减,在区间[2,+∞)上单调递增.
则①当0<a<2时,(0,a]?(0,2],所以函数f(x)=2x+
8
x
-3在区间(0,a]上单调递减,
故f(x)min=f(a)=2a+
8
a
-3.
②当a≥2时,函数f(x)=2x+
8
x
-3在区间(0,2]上单调递减,[2,a]上单调递增,
故f(x)min=f(2)=5.
综上所述,函数f(x)=2x+
8
x
-3在区间(0,a]上的最小值为 g(a)=
2a+
8
a
?3,0<a<2
5,a≥2