十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
正态分布最早是由一位数学家从二项分布在n趋近于无穷大时的近似而推导出来的。 二项分布的概率密度C(m,n)*p^m*(1-p)^(n-m),考虑此函数在n趋近于无穷大,m在n/2附近时的近似。 求近似时,关键的一步是用斯特灵公式:N!约等于N的N次方乘以根号下2πN再除以e的N次方,当N非常大时。在具体推导中,对于n,n-m,m都可以适用此近似。 另一个关键步骤是,推导中用d^2=np(1-p)来代换,也就是说,二项分布的分散,对于二项分布的近似,仍然是一个有意义的有限的值。
创新互联建站长期为1000+客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为吴中企业提供专业的网站制作、成都网站设计,吴中网站改版等技术服务。拥有10年丰富建站经验和众多成功案例,为您定制开发。
示例:
1、from numpy import *;
2、def rand_Matrix():
3、randArr=random.randn(2,3);
4、randMat=mat(randArr);
5、return randMat;
一种结果如下:
1、matrix([[ 0.3150869 , -0.02041996, -0.15361071],
2、[-0.75507988, 0.80393683, -0.31790917]])
扩展资料
Python正态分布概率计算方法:
def st_norm(u):
'''标准正态分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1+sum([a*pow(x,(i+1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u0 else 0.5+0.5*E
return(p)
def norm(a,sigma,x):
'''一般正态分布'''
u=(x-a)/sigma
return(st_norm(u))
while 1:
'''输入一个数时默认为标准正态分布
输入三个数(空格隔开)时分别为期望、方差、x
输入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')
正态分布函数公式是P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}。 其中 F(y)为Y的分布函数,F(x)为X的分布函数。其中μ为均数,σ为标准差。μ决定了正态分布的位置,与μ越近,被取到的概率就越大,反之越小。
σ描述的是正态分布的离散程度,σ越大,数据分布越分散曲线越扁平。σ越小,数据分布越集中曲线越陡峭。若随机变量X服从一个位置参数为μ、尺度参数为σσ的概率分布,且其概率密度函数为f(x)=12π−−√σe−(x−μ)22σ2。
正态分布函数的特征
1、集中性,正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性,正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变答动性,正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ)。
5、u变换,为了便于描述和应用,常将正态变量作数据转换。
正态分布
若连续型随机变量 X的概率密度为
其中μ,σ(σ0)为常数,则称 X服从参数为μ,σ的正态分布或高斯(Gauss)分布,
1、曲线关于x=μ对称.这表明对于任意h0
2、当x=μ时取到最大值
x离μ越远,f(x)的值越小.这表明对于同样长度的区间,当区间离μ越远,X 落在这个区间上的概率越小.
在 x=μ±a处曲线有拐点.曲线以 Ox 轴为渐近线.