我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python数据降维函数 python数组降维

如何用python实现pca降维

首先2个包:

创新互联建站是一家集网站建设,叶城企业网站建设,叶城品牌网站建设,网站定制,叶城网站建设报价,网络营销,网络优化,叶城网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

import numpy as np

from sklearn.decomposition import PCA

然后一个m x n 的矩阵,n为维度,这里设为x。

n_components = 12 是自己可以设的。

pca = PCA(n_components=12)

pca.fit(x)

PCA(copy=True, iterated_power='auto', n_components=12, random_state=None,

svd_solver='auto', tol=0.0, whiten=False)

float_formatter = lambda x: "%.2f" % x

np.set_printoptions(formatter={'float_kind':float_formatter})

print 'explained variance ratio:'

print pca.explained_variance_ratio_

print 'cumulative sum:'

print pca.explained_variance_ratio_.cumsum()

Python LDA降维中不能输出指定维度(n_components)的新数据集

LDA降维后的维度区间在[1,C-1],C为特征空间的维度,与原始特征数n无关,对于二值分类,最多投影到1维,所以我估计你是因为这是个二分类问题,所以只能降到一维。

python数据分析与应用第三章代码3-5的数据哪来的

savetxt

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 读入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始

3.6.1 算术平均值

np.mean(c) = np.average(c)

3.6.2 加权平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 极值

np.min(c)

np.max(c)

np.ptp(c) 最大值与最小值的差值

3.10 统计分析

np.median(c) 中位数

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一个由相邻数组元素的差

值构成的数组

returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素

np.std(c) 标准差

对数收益率

logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数

where 可以根据指定的条件返回所有满足条件的数

组元素的索引值。

posretindices = np.where(returns 0)

np.sqrt(1./252.) 平方根,浮点数

3.14 分析日期数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。

a = [4, 3, 5, 7, 6, 8]

indices = [0, 1, 4]

np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是数组中最大元素的索引值

np.argmin(c)

3.16 汇总数据

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一个星期一和最后一个星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#创建一个数组,用于存储三周内每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每个子数组5个元素,用split函数切分数组

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。

0818b9ca8b590ca3270a3433284dd417.png

格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

b = np.array([[1,2,3], [4,5,6], [7,8,9]])

np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片

array([ 4., 5., 6.])

np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片

array([ 2., 5., 8.])

b = np.array([[8,1,7], [4,3,9], [5,2,6]])

np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 计算简单移动平均线

(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5时,输出结果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等

(2) 使用这些权重值,调用convolve函数:

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。

t = np.arange(N - 1, len(c)) #作图

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 计算指数移动平均线

指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一个元素值在指定的范围内均匀分布的数组。

print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)权重计算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)权重归一化处理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)计算及作图

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用线性模型预测价格

(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值

print x, residuals, rank, s

#计算下一个预测值

print np.dot(b, x)

3.28 绘制趋势线

x = np.arange(6)

x = x.reshape((2, 3))

x

array([[0, 1, 2], [3, 4, 5]])

np.ones_like(x) #用1填充数组

array([[1, 1, 1], [1, 1, 1]])

类似函数

zeros_like

empty_like

zeros

ones

empty

3.30 数组的修剪和压缩

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #输出数组元素阶乘结果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

python 数据降维程序请教

def dict_f(f): d={} for line in f: l = line.strip("\n").split(" ") d[l[0]] = l[1:] return ddef result(d_c,d_a,cookn): app,game,shoot,apply,function,iq=0,0,0,0,0,0 app = len(d_c[cookn]) for i in d_c[cookn]: for ii in d_a[i]: if (ii=="game"): game= game+1 elif(ii=="shoot"): shoot = shoot +1 elif(ii=="apply"): apply = apply +1 elif(ii=="function"): function = function +1 elif(ii=="iq"): iq = iq +1 else: pass return (app,game,shoot,apply,function,iq) f = open("cookie.txt","r+") #行首没有空格,每个单词之间有且仅有一个空格d_c = dict_f(f) f1 = open("app.txt","r+")#行首没有空格,每个单词之间有且仅有一个空格d_a = dict_f(f1)l_c = d_c.keys()l=[i for i in sorted(l_c) if(i!="") ]for i in l: print i+" "+"app=%d game=%d shoot=%d apply=%d function=%d iq=%d"%result(d_c,d_a,i)#print 可以改写输入到文件中

python如何减小维度

ravel():将多维数组拉平(一维)。

flatten():将多维数组拉平,并拷贝一份。

squeeze():除去多维数组中,维数为1的维度,如315降维后3*5。

reshape(-1):多维数组,拉平。

reshape(-1,5):其中-1表示我们不用亲自去指定这一维度的大小,理解为n维。

python学习网,大量的免费python视频教程,欢迎在线学习!


当前文章:python数据降维函数 python数组降维
网站网址:http://mswzjz.cn/article/hijhgc.html

其他资讯