贝锐智能攀枝花建站部专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

mysql数据库怎么面试,mysql数据库面试题常问

「春招系列」MySQL面试核心25问(附答案)

篇幅所限本文只写了MySQL25题,像其他的Redis,SSM框架,算法,计网等技术栈的面试题后面会持续更新,个人整理的1000余道面试八股文会放在文末给大家白嫖,最近有面试需要刷题的同学可以直接翻到文末领取。

创新互联公司是一家专业提供桂林企业网站建设,专注与网站建设、网站设计、H5网站设计、小程序制作等业务。10年已为桂林众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。

如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置, 频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE(optimize table)来重建表并优化填充页面。

Server层按顺序执行sql的步骤为:

简单概括:

可以分为服务层和存储引擎层两部分,其中:

服务层包括连接器、查询缓存、分析器、优化器、执行器等 ,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。

存储引擎层负责数据的存储和提取 。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL 5.5.5版本开始成为了默认的存储引擎。

Drop、Delete、Truncate都表示删除,但是三者有一些差别:

Delete 用来删除表的全部或者一部分数据行,执行Delete之后,用户需要提交(commmit)或者回滚(rollback)来执行删除或者撤销删除,会触发这个表上所有的delete触发器。

Truncate 删除表中的所有数据,这个操作不能回滚,也不会触发这个表上的触发器,TRUNCATE比Delete更快,占用的空间更小。

Drop 命令从数据库中删除表,所有的数据行,索引和权限也会被删除,所有的DML触发器也不会被触发,这个命令也不能回滚。

因此,在不再需要一张表的时候,用Drop;在想删除部分数据行时候,用Delete;在保留表而删除所有数据的时候用Truncate。

隔离级别脏读不可重复读幻影读 READ-UNCOMMITTED 未提交读 READ-COMMITTED 提交读 REPEATABLE-READ 重复读 SERIALIZABLE 可串行化读

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ (可重读)

这里需要注意的是 :与 SQL 标准不同的地方在于InnoDB 存储引擎在 REPEATABLE-READ(可重读)事务隔离级别 下使用的是 Next-Key Lock 锁 算法,因此可以避免幻读的产生,这与其他数据库系统(如 SQL Server)是不同的。所以 说InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读) 已经可以完全保证事务的隔离性要 求,即达到了 SQL标准的SERIALIZABLE(可串行化)隔离级别。

因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内 容):,但是你要知道的是InnoDB 存储引擎默认使用 REPEATABLE-READ(可重读)并不会有任何性能损失 。

InnoDB 存储引擎在分布式事务 的情况下一般会用到SERIALIZABLE(可串行化)隔离级别。

主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。

文件与数据库都是需要较大的存储,也就是说,它们都不可能全部存储在内存中,故需要存储到磁盘上。而所谓索引,则为了数据的快速定位与查找,那么索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数,因此B+树相比B树更为合适。数据库系统巧妙利用了局部性原理与磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入,而红黑树这种结构,高度明显要深的多,并且由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性。

最重要的是,B+树还有一个最大的好处:方便扫库。

B树必须用中序遍历的方法按序扫库,而B+树直接从叶子结点挨个扫一遍就完了,B+树支持range-query非常方便,而B树不支持,这是数据库选用B+树的最主要原因。

B+树查找效率更加稳定,B树有可能在中间节点找到数据,稳定性不够。

B+tree的磁盘读写代价更低:B+tree的内部结点并没有指向关键字具体信息的指针(红色部分),因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一块盘中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多,相对来说IO读写次数也就降低了;

B+tree的查询效率更加稳定:由于内部结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引,所以,任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当;

视图是一种虚拟的表,通常是有一个表或者多个表的行或列的子集,具有和物理表相同的功能 游标是对查询出来的结果集作为一个单元来有效的处理。一般不使用游标,但是需要逐条处理数据的时候,游标显得十分重要。

而在 MySQL 中,恢复机制是通过回滚日志(undo log)实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后在对数据库中的对应行进行写入。当事务已经被提交之后,就无法再次回滚了。

回滚日志作用:1)能够在发生错误或者用户执行 ROLLBACK 时提供回滚相关的信息 2) 在整个系统发生崩溃、数据库进程直接被杀死后,当用户再次启动数据库进程时,还能够立刻通过查询回滚日志将之前未完成的事务进行回滚,这也就需要回滚日志必须先于数据持久化到磁盘上,是我们需要先写日志后写数据库的主要原因。

InnoDB

MyISAM

总结

数据库并发会带来脏读、幻读、丢弃更改、不可重复读这四个常见问题,其中:

脏读 :在第一个修改事务和读取事务进行的时候,读取事务读到的数据为100,这是修改之后的数据,但是之后该事务满足一致性等特性而做了回滚操作,那么读取事务得到的结果就是脏数据了。

幻读 :一般是T1在某个范围内进行修改操作(增加或者删除),而T2读取该范围导致读到的数据是修改之间的了,强调范围。

丢弃修改 :两个写事务T1 T2同时对A=0进行递增操作,结果T2覆盖T1,导致最终结果是1 而不是2,事务被覆盖

不可重复读 :T2 读取一个数据,然后T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。

第一个事务首先读取var变量为50,接着准备更新为100的时,并未提交,第二个事务已经读取var为100,此时第一个事务做了回滚。最终第二个事务读取的var和数据库的var不一样。

T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。

T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。例如:事务1读取某表中的数据A=50,事务2也读取A=50,事务1修改A=A+50,事务2也修改A=A+50,最终结果A=100,事务1的修改被丢失。

T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。

悲观锁,先获取锁,再进行业务操作,一般就是利用类似 SELECT … FOR UPDATE 这样的语句,对数据加锁,避免其他事务意外修改数据。当数据库执行SELECT … FOR UPDATE时会获取被select中的数据行的行锁,select for update获取的行锁会在当前事务结束时自动释放,因此必须在事务中使用。

乐观锁,先进行业务操作,只在最后实际更新数据时进行检查数据是否被更新过。Java 并发包中的 AtomicFieldUpdater 类似,也是利用 CAS 机制,并不会对数据加锁,而是通过对比数据的时间戳或者版本号,来实现乐观锁需要的版本判断。

分库与分表的目的在于,减小数据库的单库单表负担,提高查询性能,缩短查询时间。

通过分表 ,可以减少数据库的单表负担,将压力分散到不同的表上,同时因为不同的表上的数据量少了,起到提高查询性能,缩短查询时间的作用,此外,可以很大的缓解表锁的问题。分表策略可以归纳为垂直拆分和水平拆分:

水平分表 :取模分表就属于随机分表,而时间维度分表则属于连续分表。如何设计好垂直拆分,我的建议:将不常用的字段单独拆分到另外一张扩展表. 将大文本的字段单独拆分到另外一张扩展表, 将不经常修改的字段放在同一张表中,将经常改变的字段放在另一张表中。对于海量用户场景,可以考虑取模分表,数据相对比较均匀,不容易出现热点和并发访问的瓶颈。

库内分表 ,仅仅是解决了单表数据过大的问题,但并没有把单表的数据分散到不同的物理机上,因此并不能减轻 MySQL 服务器的压力,仍然存在同一个物理机上的资源竞争和瓶颈,包括 CPU、内存、磁盘 IO、网络带宽等。

分库与分表带来的分布式困境与应对之策 数据迁移与扩容问题----一般做法是通过程序先读出数据,然后按照指定的分表策略再将数据写入到各个分表中。分页与排序问题----需要在不同的分表中将数据进行排序并返回,并将不同分表返回的结果集进行汇总和再次排序,最后再返回给用户。

不可重复读的重点是修改,幻读的重点在于新增或者删除。

视图是虚拟的表,与包含数据的表不一样,视图只包含使用时动态检索数据的查询;不包含任何列或数据。使用视图可以简化复杂的 sql 操作,隐藏具体的细节,保护数据;视图创建后,可以使用与表相同的方式利用它们。

视图不能被索引,也不能有关联的触发器或默认值,如果视图本身内有order by 则对视图再次order by将被覆盖。

创建视图:create view xxx as xxxx

对于某些视图比如未使用联结子查询分组聚集函数Distinct Union等,是可以对其更新的,对视图的更新将对基表进行更新;但是视图主要用于简化检索,保护数据,并不用于更新,而且大部分视图都不可以更新。

B+tree的磁盘读写代价更低,B+tree的查询效率更加稳定 数据库索引采用B+树而不是B树的主要原因:B+树只要遍历叶子节点就可以实现整棵树的遍历,而且在数据库中基于范围的查询是非常频繁的,而B树只能中序遍历所有节点,效率太低。

B+树的特点

在最频繁使用的、用以缩小查询范围的字段,需要排序的字段上建立索引。不宜:1)对于查询中很少涉及的列或者重复值比较多的列 2)对于一些特殊的数据类型,不宜建立索引,比如文本字段(text)等。

如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称 之为“覆盖索引”。

我们知道在InnoDB存储引 擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次,这样就 会比较慢。覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

举例 :

学号姓名性别年龄系别专业 20020612李辉男20计算机软件开发 20060613张明男18计算机软件开发 20060614王小玉女19物理力学 20060615李淑华女17生物动物学 20060616赵静男21化学食品化学 20060617赵静女20生物植物学

主键为候选键的子集,候选键为超键的子集,而外键的确定是相对于主键的。

【MySQL】20个经典面试题

原文链接:

基本原理流程,3个线程以及之间的关联;

(1)、varchar与char的区别

(2)、varchar(50)中50的涵义

(3)、int(20)中20的涵义

(4)、mysql为什么这么设计

2.InnoDB支持行级锁,而MyISAM支持表级锁

3.InnoDB支持MVCC, 而MyISAM不支持

4.InnoDB支持外键,而MyISAM不支持

5.InnoDB不支持全文索引,而MyISAM支持。

(2)、innodb引擎的4大特性

插入缓冲(insert buffer),二次写(double write),自适应哈希索引(ahi),预读(read ahead)

(3)、2者selectcount(*)哪个更快,为什么 myisam更快,因为myisam内部维护了一个计数器,可以直接调取。

(1)、您是选择拆成子表,还是继续放一起;

(2)、写出您这样选择的理由。

开放性问题:据说是腾讯的

Mysql 数据库面试问题

select

t1.non_seller,

t3.coupon,

ifnull(sum(t2.bal),0)

from

(select seller,coupon from

(select distinct seller from t2) c,

(select distinct coupon from t2) d

) t3

left join t2 on

t3.seller=t2.seller and t3.coupon=t2.coupon

join t1

on t1.seller=t3.seller

group by

t1.non_seller,t3.coupon

order by t3.coupon,t1.non_seller

mysql数据库面试题(学生表_课程表_成绩表_教师表)

Student(Sid,Sname,Sage,Ssex)学生表

Sid:学号

Sname:学生姓名

Sage:学生年龄

Ssex:学生性别

Course(Cid,Cname,Tid)课程表

Cid:课程编号

Cname:课程名称

Tid:教师编号

SC(Sid,Cid,score)成绩表

Sid:学号

Cid:课程编号

score:成绩

Teacher(Tid,Tname)教师表

Tid:教师编号:

Tname:教师名字

1、插入数据

2、删除课程表所有数据

3、将学生表中的姓名 张三修改为张大山

或者

4、查询姓’李’的老师的个数:

5、查询所有课程成绩小于60的同学的学号、姓名:

6、查询没有学全所有课的同学的学号、姓名

7、查询平均成绩大于60分的同学的学号和平均成绩

8、查询学过“100”并且也学过编号“101”课程的同学的学号、姓名

9、查询“100”课程比“101”课程成绩高的所有学生的学号

10、查询课程编号“100”的成绩比课程编号“101”课程高的所有同学的学号、姓名

11、查询学过“鲁迅”老师所教的所有课的同学的学号、姓名

12、查询所有同学的学号、姓名、选课数、总成绩

13、查询至少有一门课与学号为“1”同学所学相同的同学的学号和姓名

14、把“SC”表中“鲁迅”老师教的课的成绩都更改为此课程的平均成绩,

错误

15、查询和“2”学号的同学学习的课程完全相同的其他同学学号和姓名

16、删除学习“鲁迅”老师课的SC表记录

17、向SC表中插入一些记录,这些记录要求符合以下条件:没有上过编号“003”课程的同学学号、002号课的平均成绩

18、查询各科成绩最高和最低的分:以如下的形式显示:课程ID,最高分,最低分

19、按各科平均成绩从低到高和及格率的百分数从高到低顺序

20、查询如下课程平均成绩和及格率的百分数(用”1行”显示): 数学(100),语文(101),英语(102)

22、查询不同老师所教不同课程平均分从高到低显示

23、查询如下课程成绩第3名到第6名的学生成绩单:数学(100),语文(101),英语(102)

23、统计下列各科成绩,各分数段人数:课程ID,课程名称,[100-85],[85-70],[70-60],[ 小于60]

24、查询学生平均成绩及其名次

25、查询各科成绩前三名的记录(不考虑成绩并列情况)

26、查询每门课程被选修的学生数

27、查询出只选修一门课程的全部学生的学号和姓名

28、查询男生、女生人数

29、查询姓“张”的学生名单

30、查询同名同姓的学生名单,并统计同名人数

31、1981年出生的学生名单(注:student表中sage列的类型是datetime)

32、查询平均成绩大于85的所有学生的学号、姓名和平均成绩

33、查询每门课程的平均成绩,结果按平均成绩升序排序,平均成绩相同时,按课程号降序排列

34、查询课程名称为“英语”,且分数低于60的学生名字和分数

35、查询所有学生的选课情况

36、查询任何一门课程成绩在70分以上的姓名、课程名称和分数

37、查询不及格的课程,并按课程号从大到小的排列

38、查询课程编号为“101”且课程成绩在80分以上的学生的学号和姓名

39、求选了课程的学生人数:

40、查询选修“鲁迅”老师所授课程的学生中,成绩最高的学生姓名及其成绩

41、检索至少选修两门课程的学生学号

42、查询全部学生都选修的课程的课程号和课程名(1.一个课程被全部的学生选修,2.所有的学生选择的所有课程)

43、查询没学过“鲁迅”老师讲授的任一门课程的学生姓名

44、查询两门以上不及格课程的同学的学号及其平均成绩

45、检索“101”课程分数小于60,按分数降序排列的同学学号

46、删除“2”同学的“101”课程的成绩

程序员面试宝典之Mysql数据库Innodb引擎的4个隔离级别

题目:请阐述Mysql Innodb引擎的4个隔离级别

难度:三星

面试频率:五星

这道题真的是一道数据库的高频题,数据库题除了索引的原理之外就是这道题的面试频率最高。

1.Read uncommitted(读未提交):,最低的隔离级别,可以一个事务读到其他事务没有提交的数据,也称脏读,这个隔离级别很少人用

2.Read committed(读已提交):相比于读未提交,这个隔离级别只能读到其他事物已经提交了的数据,这个隔离级别用得比较多。但是不是Mysql默认的隔离级别

3.Repeatable read(可重复读): 在读已提交隔离级别中,2次读取同一个变量如果其他事务修改了它的值,会读到的不一样。而在这个隔离级别中,顾名思义,一个事务开始读了。多次读到的值可以保证是一样的

4.Serializable 序列化 在这个隔离级别下,所有的事务都将串行操作,是隔离级别最高的也是效率最低的,很少人用

面试官追问:Innodb引擎默认隔离级别是哪个

答:可重复读

面试官追问:可重复读的实现原理

答:使用了MVCC多版本控制(类似乐观锁),Innodb引擎会给每一行数据加一个版本号信息,当一个事务修改一个数据时会增加它的版本号+1,当一个事务开始的时候会缓存下此时的版本号,后面读取的时候只会读取这个版本号的数据,因此别的事务提交了修改数据的版本号大于它,因此不会被读到

面试官追问:事务的隔离级别如何设置:

答:在Mysql命令行下调用命令 set global.tx_isolation,但这样Mysql重启失效,修改my.cnf来永久设置

面试官追问:可重读读有什么问题

答:会出现幻读,幻读是指事务读取到一个值无法准确继续后续操作。例如读取一个值,没有则插入,但是等插入的时候其他事务已经插入了,这就会导致插入失败,解决办法:sql语句显示加锁 :select xxxx for update,其他事务修改数据则会阻塞

每日一问-常见MySQL面试问题3

什么是数据库事务,MySQL 为什么会使用 InnoDB 作为默认选项?

1.原子性(一个原子事务中的所有操作要么全部成功,要么全部失败) 实现主要基于undo log(回滚日志)

2.一致性(数据库总是从一个一致性的状态转换到另一个一致性的状态)

3. 隔离性(针对并发事务而言,事务必须在不干扰其他进程或事务的前提下独立执行)

4.持久性(一旦事务提交成功,它对于数据的修改就会永久保存到数据库中)

也就是我们常说的事务ACID,这样才能保证事务中数据的正确性。

InnoDB支持事务安全,InnoDB支持表、行(默认)级锁,而MyISAM支持表级锁;


当前名称:mysql数据库怎么面试,mysql数据库面试题常问
文章分享:http://mswzjz.cn/article/hescdg.html

其他资讯