我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python自带卷积函数,卷积 Python

Python 中用于两个值卷积的函数是什么,我知道matlab 中是conv,Python中有预知对应的吗

全部用文件IO的话可以这样: matlab把所有参数输出到一个文件里,然后用system命令调python脚本。python脚本读文件做计算结果再写文件。最后matlab再读文件得到结果。 假设python脚本的用法是: python xxx.py in.txt out.txt 则matlab调用命令...

成都创新互联公司长期为成百上千客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为桥东企业提供专业的成都网站建设、做网站,桥东网站改版等技术服务。拥有10多年丰富建站经验和众多成功案例,为您定制开发。

python内置函数有哪些

python常见的内置函数有:

1. abs()函数返回数字的绝对值。

2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。

3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。

4. bin()函数返回一个整数int或者长整数long int的二进制表示。

5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。

6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。

7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)

8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。

9. dict()函数用来将元组/列表转换为字典格式。

10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。

扩展资料:

如何查看python3.6的内置函数?

1、首先先打开python自带的集成开发环境IDLE;

2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;

3、回车之后我们就可以看到python所有的内置函数;

4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";

5、然后回车,同样的这个方法也可以得到所有的python内置的函数;

6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";

7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;

8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。

python三维卷积可以用什么函数? matlab只要用convn

写了一个输入和卷积核dim=2是一样的(都是3)的卷积函数,可以试试多加一个for循环变成三维卷积

def conv3D(image, filter):

'''

三维卷积

:param image: 输入,shape为 [h,w,c], c=3

:param filter:  卷积核,shape为 [x,y,z], z=3

:return:

'''

h, w, c = image.shape

x, y, z = filter.shape

height_new = h - x + 1  # 输出 h

width_new = w - y + 1  # 输出 w

image_new = np.zeros((height_new, width_new), dtype=np.float)

for i in range(height_new):

for j in range(width_new):

r = np.sum(image[i:i+x, j:j+x, 0] * filter[:,:,0])

g = np.sum(image[i:i+y, j:j+y, 1] * filter[:,:,1])

b = np.sum(image[i:i+z, j:j+z, 2] * filter[:,:,2])

image_new[i, j] = np.sum([r,g,b])

image_new = image_new.clip(0, 255)

image_new = np.rint(image_new).astype('uint8')

return image_new

怎样用python构建一个卷积神经网络?

用keras框架较为方便

首先安装anaconda,然后通过pip安装keras

1、#导入各种用到的模块组件

from __future__ import absolute_import

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.advanced_activations import PReLU

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.optimizers import SGD, Adadelta, Adagrad

from keras.utils import np_utils, generic_utils

from six.moves import range

from data import load_data

import random

import numpy as np

np.random.seed(1024)  # for reproducibility

2、。#打乱数据

index = [i for i in range(len(data))]

random.shuffle(index)

data = data[index]

label = label[index]

print(data.shape[0], ' samples')

#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数

label = np_utils.to_categorical(label, 10)

###############

#开始建立CNN模型

###############

#生成一个model

model = Sequential()

3、#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。

#border_mode可以是valid或者full,具体看这里说明:

#激活函数用tanh

#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))

model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))

model.add(Activation('tanh'))

#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数

4、全连接层,先将前一层输出的二维特征图flatten为一维的。

#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4

#全连接有128个神经元节点,初始化方式为normal

model.add(Flatten())

model.add(Dense(128, init='normal'))

model.add(Activation('tanh'))

#Softmax分类,输出是10类别

model.add(Dense(10, init='normal'))

model.add(Activation('softmax'))

#############

#开始训练模型

##############

#使用SGD + momentum

#model.compile里的参数loss就是损失函数(目标函数)

sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])

#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.

#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

#validation_split=0.2,将20%的数据作为验证集。

model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)

"""

#使用data augmentation的方法

#一些参数和调用的方法,请看文档

datagen = ImageDataGenerator(

featurewise_center=True, # set input mean to 0 over the dataset

samplewise_center=False, # set each sample mean to 0

featurewise_std_normalization=True, # divide inputs by std of the dataset

samplewise_std_normalization=False, # divide each input by its std

zca_whitening=False, # apply ZCA whitening

rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

horizontal_flip=True, # randomly flip images

vertical_flip=False) # randomly flip images

# compute quantities required for featurewise normalization

# (std, mean, and principal components if ZCA whitening is applied)

datagen.fit(data)

for e in range(nb_epoch):

print('-'*40)

print('Epoch', e)

print('-'*40)

print("Training...")

# batch train with realtime data augmentation

progbar = generic_utils.Progbar(data.shape[0])

for X_batch, Y_batch in datagen.flow(data, label):

loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)

progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )


分享名称:python自带卷积函数,卷积 Python
分享网址:http://mswzjz.cn/article/heiope.html

其他资讯