十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
sum = 0
十载建站经验, 成都网站设计、成都网站制作客户的见证与正确选择。创新互联提供完善的营销型网页建站明细报价表。后期开发更加便捷高效,我们致力于追求更美、更快、更规范。
for i in range(1,100):
a = i * (i + 1)
sum += a
print(sum)
for j in range (2,sum):
if sum % j == 0:
print(sum,"是合数。")
break
else:
print(sum,"是质数")
break
Python 函数
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。
函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如print()。但你也可以自己创建函数,这被叫做用户自定义函数。
定义一个函数
你可以定义一个由自己想要功能的函数,以下是简单的规则:
函数代码块以 def 关键词开头,后接函数标识符名称和圆括号()。
任何传入参数和自变量必须放在圆括号中间。圆括号之间可以用于定义参数。
函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
函数内容以冒号起始,并且缩进。
return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。
语法
def functionname( parameters ): "函数_文档字符串"
function_suite
return [expression]
默认情况下,参数值和参数名称是按函数声明中定义的顺序匹配起来的。
实例
以下为一个简单的Python函数,它将一个字符串作为传入参数,再打印到标准显示设备上。
实例(Python 2.0+)
def printme( str ): "打印传入的字符串到标准显示设备上"
print str
return
函数调用
定义一个函数只给了函数一个名称,指定了函数里包含的参数,和代码块结构。
这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从Python提示符执行。
如下实例调用了printme()函数:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 定义函数def printme( str ): "打印任何传入的字符串"
print str
return
# 调用函数printme("我要调用用户自定义函数!")printme("再次调用同一函数")
以上实例输出结果:
我要调用用户自定义函数!再次调用同一函数
参数传递
在 python 中,类型属于对象,变量是没有类型的:
a=[1,2,3]
a="Runoob"
以上代码中,[1,2,3] 是 List 类型,"Runoob" 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针),可以是 List 类型对象,也可以指向 String 类型对象。
可更改(mutable)与不可更改(immutable)对象
在 python 中,strings, tuples, 和 numbers 是不可更改的对象,而 list,dict 等则是可以修改的对象。
不可变类型:变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变a的值,相当于新生成了a。
可变类型:变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了。
python 函数的参数传递:
不可变类型:类似 c++ 的值传递,如 整数、字符串、元组。如fun(a),传递的只是a的值,没有影响a对象本身。比如在 fun(a)内部修改 a 的值,只是修改另一个复制的对象,不会影响 a 本身。
可变类型:类似 c++ 的引用传递,如 列表,字典。如 fun(la),则是将 la 真正的传过去,修改后fun外部的la也会受影响
python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。
python 传不可变对象实例
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
def ChangeInt( a ): a = 10
b = 2ChangeInt(b)print b # 结果是 2
实例中有 int 对象 2,指向它的变量是 b,在传递给 ChangeInt 函数时,按传值的方式复制了变量 b,a 和 b 都指向了同一个 Int 对象,在 a=10 时,则新生成一个 int 值对象 10,并让 a 指向它。
传可变对象实例
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def changeme( mylist ): "修改传入的列表"
mylist.append([1,2,3,4])
print "函数内取值: ", mylist
return
# 调用changeme函数mylist = [10,20,30]changeme( mylist )print "函数外取值: ", mylist
实例中传入函数的和在末尾添加新内容的对象用的是同一个引用,故输出结果如下:
函数内取值: [10, 20, 30, [1, 2, 3, 4]]函数外取值: [10, 20, 30, [1, 2, 3, 4]]
参数
以下是调用函数时可使用的正式参数类型:
必备参数
关键字参数
默认参数
不定长参数
必备参数
必备参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。
调用printme()函数,你必须传入一个参数,不然会出现语法错误:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printme( str ): "打印任何传入的字符串"
print str
return
#调用printme函数printme()
以上实例输出结果:
Traceback (most recent call last):
File "test.py", line 11, in module
printme()TypeError: printme() takes exactly 1 argument (0 given)
关键字参数
关键字参数和函数调用关系紧密,函数调用使用关键字参数来确定传入的参数值。
使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
以下实例在函数 printme() 调用时使用参数名:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printme( str ): "打印任何传入的字符串"
print str
return
#调用printme函数printme( str = "My string")
以上实例输出结果:
My string
下例能将关键字参数顺序不重要展示得更清楚:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printinfo( name, age ): "打印任何传入的字符串"
print "Name: ", name
print "Age ", age
return
#调用printinfo函数printinfo( age=50, name="miki" )
以上实例输出结果:
Name: mikiAge 50
默认参数
调用函数时,默认参数的值如果没有传入,则被认为是默认值。下例会打印默认的age,如果age没有被传入:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
#可写函数说明def printinfo( name, age = 35 ): "打印任何传入的字符串"
print "Name: ", name
print "Age ", age
return
#调用printinfo函数printinfo( age=50, name="miki" )printinfo( name="miki" )
以上实例输出结果:
Name: mikiAge 50Name: mikiAge 35
不定长参数
你可能需要一个函数能处理比当初声明时更多的参数。这些参数叫做不定长参数,和上述2种参数不同,声明时不会命名。基本语法如下:
def functionname([formal_args,] *var_args_tuple ): "函数_文档字符串"
function_suite
return [expression]
加了星号(*)的变量名会存放所有未命名的变量参数。不定长参数实例如下:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def printinfo( arg1, *vartuple ): "打印任何传入的参数"
print "输出: "
print arg1
for var in vartuple: print var
return
# 调用printinfo 函数printinfo( 10 )printinfo( 70, 60, 50 )
以上实例输出结果:
输出:10输出:706050
匿名函数
python 使用 lambda 来创建匿名函数。
lambda只是一个表达式,函数体比def简单很多。
lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。
lambda函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数。
虽然lambda函数看起来只能写一行,却不等同于C或C++的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。
语法
lambda函数的语法只包含一个语句,如下:
lambda [arg1 [,arg2,.....argn]]:expression
如下实例:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明sum = lambda arg1, arg2: arg1 + arg2
# 调用sum函数print "相加后的值为 : ", sum( 10, 20 )print "相加后的值为 : ", sum( 20, 20 )
以上实例输出结果:
相加后的值为 : 30相加后的值为 : 40
return 语句
return语句[表达式]退出函数,选择性地向调用方返回一个表达式。不带参数值的return语句返回None。之前的例子都没有示范如何返回数值,下例便告诉你怎么做:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
# 可写函数说明def sum( arg1, arg2 ): # 返回2个参数的和."
total = arg1 + arg2
print "函数内 : ", total
return total
# 调用sum函数total = sum( 10, 20 )
以上实例输出结果:
函数内 : 30
变量作用域
一个程序的所有的变量并不是在哪个位置都可以访问的。访问权限决定于这个变量是在哪里赋值的。
变量的作用域决定了在哪一部分程序你可以访问哪个特定的变量名称。两种最基本的变量作用域如下:
全局变量
局部变量
全局变量和局部变量
定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域。
局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。调用函数时,所有在函数内声明的变量名称都将被加入到作用域中。如下实例:
实例(Python 2.0+)
#!/usr/bin/python# -*- coding: UTF-8 -*-
total = 0 # 这是一个全局变量# 可写函数说明def sum( arg1, arg2 ): #返回2个参数的和."
total = arg1 + arg2 # total在这里是局部变量.
print "函数内是局部变量 : ", total
return total
#调用sum函数sum( 10, 20 )print "函数外是全局变量 : ", total
以上实例输出结果:
函数内是局部变量 : 30函数外是全局变量 : 0
对于气象绘图来讲,第一步是对数据的处理,通过各类公式,或者统计方法将原始数据处理为目标数据。
按照气象统计课程的内容,我给出了一些常用到的统计方法的对应函数:
在计算气候态,区域平均时均要使用到求均值函数,对应NCL中的dim_average函数,在python中通常使用np.mean()函数
numpy.mean(a, axis, dtype)
假设a为[time,lat,lon]的数据,那么
需要特别注意的是,气象数据中常有缺测,在NCL中,使用求均值函数会自动略过,而在python中,当任意一数与缺测(np.nan)计算的结果均为np.nan,比如求[1,2,3,4,np.nan]的平均值,结果为np.nan
因此,当数据存在缺测数据时,通常使用np.nanmean()函数,用法同上,此时[1,2,3,4,np.nan]的平均值为(1+2+3+4)/4 = 2.5
同样的,求某数组最大最小值时也有np.nanmax(), np.nanmin()函数来补充np.max(), np.min()的不足。
其他很多np的计算函数也可以通过在前边加‘nan’来使用。
另外,
也可以直接将a中缺失值全部填充为0。
np.std(a, axis, dtype)
用法同np.mean()
在NCL中有直接求数据标准化的函数dim_standardize()
其实也就是一行的事,根据需要指定维度即可。
皮尔逊相关系数:
相关可以说是气象科研中最常用的方法之一了,numpy函数中的np.corrcoef(x, y)就可以实现相关计算。但是在这里我推荐scipy.stats中的函数来计算相关系数:
这个函数缺点和有点都很明显,优点是可以直接返回相关系数R及其P值,这避免了我们进一步计算置信度。而缺点则是该函数只支持两个一维数组的计算,也就是说当我们需要计算一个场和一个序列的相关时,我们需要循环来实现。
其中a[time,lat,lon],b[time]
(NCL中为regcoef()函数)
同样推荐Scipy库中的stats.linregress(x,y)函数:
slop: 回归斜率
intercept:回归截距
r_value: 相关系数
p_value: P值
std_err: 估计标准误差
直接可以输出P值,同样省去了做置信度检验的过程,遗憾的是仍需同相关系数一样循环计算。