十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
创新互联是一家专业提供东方企业网站建设,专注与网站制作、成都网站建设、H5开发、小程序制作等业务。10年已为东方众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。
Cassandra Cassandra
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
01
MongoDB——是一个基于分布式文件存储的数据库,由C++语言编写,其目的是为WEB应用提供可扩展的高性能数据存储解决方案,最大的特点在于它支持的查询语言非常强大,局域高性能、易部署、存储数据方便、模式自由等特点。
02
Cassandra——是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存收件箱等简单格式数据,具有模式灵活、多数据中心识别,可扩展性强等特点 。
03
Hadoop HBASE——采用了Google BigTable的稀疏的,面向列的数据库实现方式的理论,建立在hadoop的hdfs上。
04
Couchbase——是一个集群化的、基于文档的数据库系统,它使用一个缓存层来提供非常快的数据访问,将大部分数据都存储在 RAM 中。
05
Neo4j——是面向网络的数据库。也就是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但它将结构化数据存储在网络上而不是在表中。
Apache三剑客:HBase, Cassandra, CouchDB。HBase的前景最为看好,因为它的开发者众多并且都是顶尖高手。Cassandra目前有很多否定的声音。CouchDB的小而精悍,赞誉很多,将要正式发布的CouchBase融合了MemBase和CouchDB,很令人期待。
HBase和Cassandra都是效仿Google的BigTable的基于列的数据库,它们都是用Java写的。另外一类似的数据库是HyperTable,百度用在一些后台分析,因为它是C++写的,速度比较快。不过HyperTable有点边缘,不太流行。这些基于列的开源数据库目前都比Goolge的BigTable差之少一个数量级
CouchDB是一个文档数据库。其最大的竞争者是MongoDB。MongoDB和HBase都采用主从服务器设计。CouchDB的服务器分布设计和Cassandra类似,Peer to Peer类型的。主从服务器设计一般能更好的strong consistent,属于CAP理论中的CP类型。 CouchDB和Cassandra一般认为都是eventual consistent,属于CAP理论中的AP类型。但其实MongoDB和Cassandra都可以设置成strong consistent或者eventual consistent。
以上所提到的数据库都支持MapReduce。好像出了HyperTable都支持非主键索引。HBase和strong consistent配置的MongoDB都支持最基本的锁定(HBase单行锁定,MongoDB单文档锁定),因此可以实现transaction,但是实现有点复杂和低效。单就transaction这一点,目前开源NoSQL数据库没有做的比较好的。
MongoDB的最大卖点是不需构建非主键索引也能执行很多查询。但是MongoDB的服务器分布设计实在不能让人恭维,可以说是NoSQL数据库中最Ugly的实现。
K-V数据库比较多,而且上面提到的基于列的数据库和文档数据库其实也都是K-V数据库。比较流行的纯种K-V数据库有:
Memcached: 非常流行,不支持持久化
VMWare's Redis: 很流行,新浪和知乎都在用,CP类型。
MemBase: 由很多Memcached的开发者开发,使用sqlite作底层存储。在社交游戏中用的比较多, zynga在用,CP类型。
Riak, 分布式实现和CouchDB/Cassandra比较像,AP类型。支持MapReduce。
Linkin's Voldemort, 在K-V中少见的eventual consistent ,AP类型。
TT, TC
纯基于二维座标索引的是Neo4j。但是现在MongoDB和CouchDB都集成这一特性。
目前CouchDB的开发者成立的公司CouchOne收购了MemBase,将其底层sqlite换成CouchDB推出了CouchBase,从而引入MapReduce以支持非主键索引。CouchBase暂时还没有正式发布官方正式版,不过快了。虽然CouchDB是eventual consistent的,但是CouchBase的开发者宣称CouchBase保持了MemBase的strong consistent特性,具体实现有待以后研究。
如果从成熟的角度来看,比较成熟并且十分流行的的有CouchDB,Memcached,Redis。
HBase和MongonDB和Cassandra都比较新,处于频繁更新之中。最有前途的是HBase,但是Hadoop/HBase集群的维护常常需要很多专业人员并且需要构建一个比较大的集群才能最大化体现出威力,因此用户主要是Facebook, yahoo, 百度和阿里巴巴等大公司。
个人比较期待CouchBase。
转载仅供参考,版权属于原作者。祝你愉快,满意请采纳哦
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。
常见的Nosql数据库有:
一、Redis数据库
Redis(RemoteDictionaryServer),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。从2013年5月开始,Redis的开发由Pivotal赞助。
二、MongoDB数据库
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。
Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。
扩展资料:
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
一、易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
二、大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。
三、灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web2.0时代尤其明显。
四、高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用。
参考资料来源:百度百科-NoSQL
AWS推出了与SQL兼容的查询语言PartiQL,只要数据库查询引擎提供PartiQL支持,使用者就能以PartiQL单一查询关联式数据库的结构化资料,以及开放资料格式中的巢状资料或是半结构化资料,甚至还能用来查询NoSQL或是文件数据库中无固定结构(Schema-less)的资料。除了AWS自家的数据库服务,NoSQL数据库Couchbase Server也承诺将会支持PartiQL。
企业资料分散在关联式数据库、非关联式数据库以及资料湖泊中。高度结构化的资料,储存在SQL数据库或是资料仓储;无固定结构的资料则由键值储存、图形数据库(Graph Database)、分类帐数据库或是时间序列数据库等NoSQL数据库处理;而在资料湖泊中的资料,可能也有部分缺乏结构,或是可能为巢状或是多值结构。不同的资料类型适用于不同的使用案例,而每种类型的资料,可能都有自己的查询语言。
不同的资料储存对应不同的查询语言,当企业更换资料格式或是数据库引擎时,可能还需要跟着改变应用程式和查询语法,AWS提到,这对于资料的应用,特别是使用资料湖泊的灵活性与效率,有着很大的阻碍。为了统一不同类型数据库存取方法,AWS发布了查询语言PartiQL,这是个与SQL兼容的查询语言,可以用来查询以各种格式储存在各地的资料。
用户可以使用PartiQL来查询关联式数据库,像是在Redshift实作交易或是资料分析等应用,或对于Amazon S3资料湖泊的开放资料格式,同样能使用PartiQL对巢状资料与半结构化资料例如Amazon Ion格式进行查询,另外,PartiQL也可用于文件数据库等NoSQL数据库,查询无固定结构的资料。
AWS表示,PartiQL的出现,是为了满足自家查询和转换大量资料的需求,其提供严格的SQL兼容性,可与标准SQL混合使用,执行连接(Join)、过滤(Filtering)与聚合(Aggregation)操作,并以最小扩充支持巢状和半结构化资料,让开发者以简单且一致的方法,不需要更改查询语言,就能查询各种格式和服务的资料。
PartiQL具格式独立性与储存独立性,PartiQL语法和语义不依赖任何资料格式,无论使用者是要查询JSON、Parquet、ORC、CSV还是Ion等格式,查询语句的写法都相同,PartiQL的查询在综合逻辑类型系统上运作,才对应到不同底层的格式。而PartiQL也不相依于特定资料储存,因此适用于不同的底层资料储存。
虽然过去针对跨不同类型数据库查询的问题,已有不少解决方案,AWS指出,像是Postgres JSON同样也兼容于SQL,但是却无法良好地处理JSON巢状资料;而半结构化查询语言,虽然能良好处理巢状资料,但却无法与SQL语言兼容。AWS提到,PartiQL是第一个能够完全解决这些问题的查询语言。
目前AWS已在自家多项服务支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下来几个月将会有更多的AWS服务支持PartiQL,Couchbase也公布将加入支持PartiQL的行列。现在PartiQL以Apache2.0授权许可开源,公开教学、规范以及参考实作,所有社群都能使用并参与贡献。
NoSQL太火,冒出太多产品了,保守估计也成百上千了。
互联网公司常用的基本集中在以下几种,每种只举一个比较常见或者应用比较成功的例子吧。
1. In-Memory KV Store : Redis
in memory key-value store,同时提供了更加丰富的数据结构和运算的能力,成功用法是替代memcached,通过checkpoint和commit log提供了快速的宕机恢复,同时支持replication提供读可扩展和高可用。
2. Disk-Based KV Store: Leveldb
真正基于磁盘的key-value storage, 模型单一简单,数据量不受限于内存大小,数据落盘高可靠,Google的几位大神出品的精品,LSM模型天然写优化,顺序写盘的方式对于新硬件ssd再适合不过了,不足是仅提供了一个库,需要自己封装server端。
3. Document Store: Mongodb
分布式nosql,具备了区别mysql的最大亮点:可扩展性。mongodb 最新引人的莫过于提供了sql接口,是目前nosql里最像mysql的,只是没有ACID的特性,发展很快,支持了索引等特性,上手容易,对于数据量远超内存限制的场景来说,还需要慎重。
4. Column Table Store: HBase
这个富二代似乎不用赘述了,最大的优势是开源,对于普通的scan和基于行的get等基本查询,性能完全不是问题,只是只提供裸的api,易用性上是短板,可扩展性方面是最强的,其次坐上了Hadoop的快车,社区发展很快,各种基于其上的开源产品不少,来解决诸如join、聚集运算等复杂查询。