十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章主要介绍“Spark与Spark-Streaming关系是什么”,在日常操作中,相信很多人在Spark与Spark-Streaming关系是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Spark与Spark-Streaming关系是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
10年积累的成都做网站、网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先做网站设计后付款的网站建设流程,更有涡阳免费网站建设让你可以放心的选择与我们合作。
spark程序是使用一个spark应用实例一次性对一批历史数据进行处理,spark streaming是将持续不断输入的数据流转换成多个batch分片,使用一批spark应用实例进行处理,侧重点在Steaming上面。我们常说的Spark-Streaming依赖了Spark Core的意思就是,实际计算的核心框架还是spark。我们还是上一张老生常谈的官方图:
从原理上看,我们将spark-streaming转变为传统的spark需要什么?
需要构建4个东西:
一个静态的 RDD DAG 的模板,来表示处理逻辑;
一个动态的工作控制器,将连续的 streaming data 切分数据片段,并按照模板复制出新的 RDD
DAG 的实例,对数据片段进行处理;
Receiver进行原始数据的产生和导入;Receiver将接收到的数据合并为数据块并存到内存或硬盘中,供后续batch RDD进行消费;对长时运行任务的保障,包括输入数据的失效后的重构,处理任务的失败后的重调。
到此,关于“Spark与Spark-Streaming关系是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!