我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

二叉搜索树与双向链表——27

    输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表,要求不能创建任何新的结点,只能调整树中结点指针的指向。

成都网络公司-成都网站建设公司创新互联10余年经验成就非凡,专业从事成都网站制作、成都网站建设,成都网页设计,成都网页制作,软文发稿1元广告等。10余年来已成功提供全面的成都网站建设方案,打造行业特色的成都网站建设案例,建站热线:028-86922220,我们期待您的来电!

二叉搜索树与双向链表——27

如上所示的二叉搜索树,转换成排序的双向链表就是5-><-6-><-7-><-8-><-9-><-10-><-11。

    因为要求转换成双向链表,而恰好二叉树的每个结点都有两个指针,因此可以直接调整指针的指向;对于搜索二叉树,每个结点的左子树的值都比根结点的值要小,而每个右子树的值都比当前结点的值要大,而要求转换成排序的双向链表,因此,对于每个结点的访问顺序应当是先左再中后右,也就是用中序遍历的思路,这样才能保证是有序的;

    对于指针的指向,可以将每个结点指向左结点的指针看做双向链表中指向前一个结点的prev指针,而每个结点指向右结点的指针看做双向链表中指向下一个结点的next指针;因此,对于搜索二叉树的最左结点,其实也就是树中的最小值,也就是双向链表的头结点,而树的最右结点就是链表的尾结点也就是最大值;

    观察可发现,对于根结点来说,其prev应该指向的是左子树的最右结点,而next应该指向的是右子树的最左结点,因此对于整棵树来说,可以划分成左右子树来进行递归;

程序设计如下:

#include 
#include 
using namespace std;

struct BinaryTreeNode//二叉树结点结构体
{
    int _val;
    BinaryTreeNode *_Lnode;
    BinaryTreeNode *_Rnode;

    BinaryTreeNode(int val)//构造函数
        :_val(val)
         ,_Lnode(NULL)
         ,_Rnode(NULL)
    {}  
};

//创建二叉搜索树,这里简便直接使用前序遍历的方式结构造出了二叉搜索树
BinaryTreeNode* _Create(const int *arr, size_t& index, size_t size)
{
    if((index < size) && (arr[index] != '#'))
    {   
        BinaryTreeNode* root = new BinaryTreeNode(arr[index]);
        root->_Lnode = _Create(arr, ++index, size);
        root->_Rnode = _Create(arr, ++index, size);
        return root;
    }   
    else
        return NULL;
}

BinaryTreeNode* CreateBinaryTree(const int *arr, size_t size)
{
    assert(arr && size);

    size_t index = 0;
    return _Create(arr, index, size);
}

//销毁转变之后的双向链表
void DestoryBinaryTree(BinaryTreeNode* ListNode)
{
    BinaryTreeNode* tmp = ListNode;
    while(ListNode != NULL)
    {
        tmp = ListNode;
        ListNode = ListNode->_Lnode;
        delete tmp;
    }
}

//前序遍历检验二叉树
void PrevOrder(BinaryTreeNode *root)
{
    if(root != NULL)
    {
        cout<_val<<" ";
        PrevOrder(root->_Lnode);
        PrevOrder(root->_Rnode);
    }
}

//二叉搜索树转换为双向链表
void BSTToList(BinaryTreeNode* root, BinaryTreeNode** lastnode)
{
    if(root != NULL)
    {
        BSTToList(root->_Lnode, lastnode);
        root->_Lnode = *lastnode;//如果左结点为空,则当前结点的前指针指向当前链表的最后一个结点

        if(*lastnode != NULL)
            (*lastnode)->_Rnode = root;//将当前链表的最后一个结点的next指针设置为当前结点

        *lastnode = root;//将链表的最后一个结点更新为当前结点
        BSTToList(root->_Rnode, lastnode);//继续遍历右子树直至为空
    }
}

void PrintList(BinaryTreeNode* ListNode)
{
    assert(ListNode);

    BinaryTreeNode* tmp = ListNode;
    cout<<"ListHead:"<_val<_Rnode != NULL)//每个结点的右指针指向下一个结点
    {
        cout<_val<<"->";
        tmp = tmp->_Rnode;
    }
    cout<_val<<"->NULL"<_val<_Lnode != NULL)//每个结点的左指针指向前一个结点
    {
        cout<_val<<"->";
        tmp = tmp->_Lnode;
    }
    cout<_val<<"->NULL"<_Lnode != NULL)//获取链表的头结点
        ListNode = ListNode->_Lnode;

    PrintList(ListNode);

    DestoryBinaryTree(ListNode);
    return 0;
}

运行程序:

二叉搜索树与双向链表——27

《完》


标题名称:二叉搜索树与双向链表——27
文章分享:http://mswzjz.cn/article/goocdi.html

其他资讯