十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
创新互联建站是专业的郧西网站建设公司,郧西接单;提供成都做网站、网站建设、外贸营销网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行郧西网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
本期内容:
Spark Streaming数据清理原因和现象
Spark Streaming数据清理代码解析
对Spark Streaming解析了这么多课之后,我们越来越能感知,Spark Streaming只是基于Spark Core的一个应用程序,因此掌握Spark Streaming对于我们怎么编写Spark应用是绝对有好处的。
Spark Streaming 不像Spark Core的应用程序,Spark Core的应用的数据是存储在底层文件系统,如HDFS等别的存储系统中,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的累加器、广播变量,所以需要对对象及元数据需要定期清理。每个batch duration运行时不断触发job后需要清理rdd和元数据。Client模式可以看到打印的日志,从文件日志也可以看到清理日志内容。
Spark运行在jvm上,jvm会产生对象,jvm需要对对象进行回收工作,如果我们不管理gc(对象产生和回收),jvm很快耗尽。现在研究的是Spark Streaming的Spark GC。Spark Streaming对rdd的数据管理、元数据管理相当jvm对gc管理。数据、元数据是操作DStream时产生的,数据、元数据的回收则需要研究DStream的产生和回收。
数据输入靠InputDStream,数据输入、数据操作、数据输出,整个生命周期都是基于DStream构建的,DStream负责rdd的生命周期,rrd是DStream产生的,对rdd的操作也是对DStream的操作,所以不断产生batchDuration的循环,所以研究对rdd的操作也就是研究对DStream的操作。 以从kafka中 Direct方式为例, DirectKafkaInputDStream会产生KafkaRDD
override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = { val untilOffsets = clamp(latestLeaderOffsets(maxRetries)) val rdd = KafkaRDD[K, V, U, T, R]( context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler) // Report the record number and metadata of this batch interval to InputInfoTracker. val offsetRanges = currentOffsets.map { case (tp, fo) => val uo = untilOffsets(tp) OffsetRange(tp.topic, tp.partition, fo, uo.offset) } val description = offsetRanges.filter { offsetRange => // Don't display empty ranges. offsetRange.fromOffset != offsetRange.untilOffset }.map { offsetRange => s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" + s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}" }.mkString("\n") // Copy offsetRanges to immutable.List to prevent from being modified by the user val metadata = Map( "offsets" -> offsetRanges.toList, StreamInputInfo.METADATA_KEY_DESCRIPTION -> description) val inputInfo = StreamInputInfo(id, rdd.count, metadata) ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo) currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset) Some(rdd) }
DStream随着时间进行,数据周期性产生和周期性释放,在JobGenerator中有一个定时器:
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
而JobGenerator中也有一个EventLoop来周期性的接收消息事件:
/** Processes all events */private def processEvent(event: JobGeneratorEvent) { logDebug("Got event " + event) event match { case GenerateJobs(time) => generateJobs(time) case ClearMetadata(time) => clearMetadata(time) case DoCheckpoint(time, clearCheckpointDataLater) => doCheckpoint(time, clearCheckpointDataLater) case ClearCheckpointData(time) => clearCheckpointData(time) } }
里面就有清理元数据和清理checkpoint数据的方法 clearMetadata:清楚元数据信息。
/** Clear DStream metadata for the given `time`. */private def clearMetadata(time: Time) { ssc.graph.clearMetadata(time) // If checkpointing is enabled, then checkpoint, // else mark batch to be fully processed if (shouldCheckpoint) { eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true)) } else { // If checkpointing is not enabled, then delete metadata information about // received blocks (block data not saved in any case). Otherwise, wait for // checkpointing of this batch to complete. val maxRememberDuration = graph.getMaxInputStreamRememberDuration() jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration) jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration) markBatchFullyProcessed(time) } }
DStreamGraph:首先会清理outputDStream,其实就是ForEachDStream
def clearMetadata(time: Time) { logDebug("Clearing metadata for time " + time) this.synchronized { outputStreams.foreach(_.clearMetadata(time)) } logDebug("Cleared old metadata for time " + time) }
DStream.clearMetadata:除了清除RDD,也可以清除metadata元数据。如果想RDD跨Batch Duration的话可以设置rememberDuration时间. rememberDuration
/** * Clear metadata that are older than `rememberDuration` of this DStream. * This is an internal method that should not be called directly. This default * implementation clears the old generated RDDs. Subclasses of DStream may override * this to clear their own metadata along with the generated RDDs. */private[streaming] def clearMetadata(time: Time) { val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)// rememberDuration记忆周期 查看下RDD是否是oldRDD val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration)) logDebug("Clearing references to old RDDs: [" + oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")//从generatedRDDs中将key清理掉。 generatedRDDs --= oldRDDs.keys if (unpersistData) { logDebug("Unpersisting old RDDs: " + oldRDDs.values.map(_.id).mkString(", ")) oldRDDs.values.foreach { rdd => rdd.unpersist(false) // Explicitly remove blocks of BlockRDD rdd match { case b: BlockRDD[_] => logInfo("Removing blocks of RDD " + b + " of time " + time) b.removeBlocks() //清理掉RDD的数据 case _ => } } } logDebug("Cleared " + oldRDDs.size + " RDDs that were older than " + (time - rememberDuration) + ": " + oldRDDs.keys.mkString(", "))//依赖的DStream也需要清理掉。 dependencies.foreach(_.clearMetadata(time)) }
在BlockRDD中,BlockManagerMaster根据blockId将Block删除。删除Block的操作是不可逆的。
/** * Remove the data blocks that this BlockRDD is made from. NOTE: This is an * irreversible operation, as the data in the blocks cannot be recovered back * once removed. Use it with caution. */private[spark] def removeBlocks() { blockIds.foreach { blockId => sparkContext.env.blockManager.master.removeBlock(blockId) } _isValid = false}
回到JobGenerator中的processEvent看看 clearCheckpoint:清除缓存数据
/** Clear DStream checkpoint data for the given `time`. */private def clearCheckpointData(time: Time) { ssc.graph.clearCheckpointData(time) // All the checkpoint information about which batches have been processed, etc have // been saved to checkpoints, so its safe to delete block metadata and data WAL files val maxRememberDuration = graph.getMaxInputStreamRememberDuration() jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration) jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration) markBatchFullyProcessed(time) }
clearCheckpointData:
def clearCheckpointData(time: Time) { logInfo("Clearing checkpoint data for time " + time) this.synchronized { outputStreams.foreach(_.clearCheckpointData(time)) } logInfo("Cleared checkpoint data for time " + time) }
ClearCheckpointData: 和清除元数据信息一样,还是清除DStream依赖的缓存数据。
private[streaming] def clearCheckpointData(time: Time) { logDebug("Clearing checkpoint data") checkpointData.cleanup(time) dependencies.foreach(_.clearCheckpointData(time)) logDebug("Cleared checkpoint data") }
DStreamCheckpointData:清除缓存的数据
/** * Cleanup old checkpoint data. This gets called after a checkpoint of `time` has been * written to the checkpoint directory. */def cleanup(time: Time) { // Get the time of the oldest checkpointed RDD that was written as part of the // checkpoint of `time` timeToOldestCheckpointFileTime.remove(time) match { case Some(lastCheckpointFileTime) => // Find all the checkpointed RDDs (i.e. files) that are older than `lastCheckpointFileTime` // This is because checkpointed RDDs older than this are not going to be needed // even after master fails, as the checkpoint data of `time` does not refer to those files val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime) logDebug("Files to delete:\n" + filesToDelete.mkString(",")) filesToDelete.foreach { case (time, file) => try { val path = new Path(file) if (fileSystem == null) { fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration) } fileSystem.delete(path, true) timeToCheckpointFile -= time logInfo("Deleted checkpoint file '" + file + "' for time " + time) } catch { case e: Exception => logWarning("Error deleting old checkpoint file '" + file + "' for time " + time, e) fileSystem = null } } case None => logDebug("Nothing to delete") } }
至此,我们知道了怎么清理旧的数据以及清理什么数据,但是清理数据什么时候被触发的?在最终提交Job的时候,是交给JobHandler去执行的。
private class JobHandler(job: Job) extends Runnable with Logging { import JobScheduler._ def run() { try { val formattedTime = UIUtils.formatBatchTime( job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false) val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}" val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]" ssc.sc.setJobDescription( s"""Streaming job from $batchLinkText""") ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString) ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString) // We need to assign `eventLoop` to a temp variable. Otherwise, because // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then // it's possible that when `post` is called, `eventLoop` happens to null. var _eventLoop = eventLoop if (_eventLoop != null) { _eventLoop.post(JobStarted(job, clock.getTimeMillis())) // Disable checks for existing output directories in jobs launched by the streaming // scheduler, since we may need to write output to an existing directory during checkpoint // recovery; see SPARK-4835 for more details. PairRDDFunctions.disableOutputSpecValidation.withValue(true) { job.run() } _eventLoop = eventLoop if (_eventLoop != null) {//当Job完成的时候,eventLoop会发消息初始化onReceive _eventLoop.post(JobCompleted(job, clock.getTimeMillis())) } } else { // JobScheduler has been stopped. } } finally { ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null) ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null) } } } }
EventLoop 的onReceive初始化接收到消息JobCompleted.
def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start()
processEvent:
private def processEvent(event: JobSchedulerEvent) { try { event match { case JobStarted(job, startTime) => handleJobStart(job, startTime) case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime) case ErrorReported(m, e) => handleError(m, e) } } catch { case e: Throwable => reportError("Error in job scheduler", e) } }
调用JobGenerator的onBatchCompletion方法清除元数据。
private def handleJobCompletion(job: Job, completedTime: Long) { val jobSet = jobSets.get(job.time) jobSet.handleJobCompletion(job) job.setEndTime(completedTime) listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo)) logInfo("Finished job " + job.id + " from job set of time " + jobSet.time) if (jobSet.hasCompleted) { jobSets.remove(jobSet.time) jobGenerator.onBatchCompletion(jobSet.time) logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format( jobSet.totalDelay / 1000.0, jobSet.time.toString, jobSet.processingDelay / 1000.0 )) listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo)) } job.result match { case Failure(e) => reportError("Error running job " + job, e) case _ => } }
至此我们明白了什么时候触发清楚旧数据的过程。
备注:
1、DT大数据梦工厂微信公众号DT_Spark
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains