我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

DataStreamReader和DataStreamWriter怎么使用

这篇文章主要介绍“DataStreamReader和DataStreamWriter怎么使用”,在日常操作中,相信很多人在DataStreamReader和DataStreamWriter怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”DataStreamReader和DataStreamWriter怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

按需规划网站可以根据自己的需求进行定制,网站建设、成都网站建设构思过程中功能建设理应排到主要部位公司网站建设、成都网站建设的运用实际效果公司网站制作网站建立与制做的实际意义

流的读取是从DataStreamReader和DataStreamWriter开始的。

DataStreamReader

DataStreamReader是生成流读取者的入口所在,关键方法是load。这段代码很关键,所以把全部代码先贴出来,慢慢分析。

def load(): DataFrame = {
    
    val ds = DataSource.lookupDataSource(source, sparkSession.sqlContext.conf).

      getConstructor().newInstance()
   
    val v1DataSource = DataSource(

      sparkSession,

      userSpecifiedSchema = userSpecifiedSchema,

      className = source,

      options = extraOptions.toMap)

    val v1Relation = ds match {

      case _: StreamSourceProvider => Some(StreamingRelation(v1DataSource))

      case _ => None

    }

    ds match {

      case provider: TableProvider =>

        val sessionOptions = DataSourceV2Utils.extractSessionConfigs(

          source = provider, conf = sparkSession.sessionState.conf)

        val options = sessionOptions ++ extraOptions

        val dsOptions = new CaseInsensitiveStringMap(options.asJava)

        val table = userSpecifiedSchema match {

          case Some(schema) => provider.getTable(dsOptions, schema)

          case _ => provider.getTable(dsOptions)

        }

        import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Implicits._

        table match {

          case _: SupportsRead if table.supportsAny(MICRO_BATCH_READ, CONTINUOUS_READ) =>

            Dataset.ofRows(

              sparkSession,

              StreamingRelationV2(

                provider, source, table, dsOptions, table.schema.toAttributes, v1Relation)(

                sparkSession))

          // fallback to v1

          // TODO (SPARK-27483): we should move this fallback logic to an analyzer rule.

          case _ => Dataset.ofRows(sparkSession, StreamingRelation(v1DataSource))

        }

      case _ =>

        // Code path for data source v1.

        Dataset.ofRows(sparkSession, StreamingRelation(v1DataSource))

    }

  }

有好多分支,重要的是区分开V1和V2。

V1用的逻辑关系是StreamingRelation;而V2用的逻辑关系是StreamingRelationV2。这里先看看他们对应的物理计划是什么?

在SparkStrategies.scala文件中,定义了物理计划:

/**

   * This strategy is just for explaining `Dataset/DataFrame` created by `spark.readStream`.

   * It won't affect the execution, because `StreamingRelation` will be replaced with

   * `StreamingExecutionRelation` in `StreamingQueryManager` and `StreamingExecutionRelation` will

   * be replaced with the real relation using the `Source` in `StreamExecution`.

   */

object StreamingRelationStrategy extends Strategy {

    def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {

      case s: StreamingRelation =>

        StreamingRelationExec(s.sourceName, s.output) :: Nil

      case s: StreamingExecutionRelation =>

        StreamingRelationExec(s.toString, s.output) :: Nil

      case s: StreamingRelationV2 =>

        StreamingRelationExec(s.sourceName, s.output) :: Nil

      case _ => Nil

    }

  }

物理计划都是StreamingRelationExec,StreamingRelationExec的代码其实啥都没实现,所以最后其实看代码注释StreamingRelationExec也不是真正的物理计划。

这里先记得相关的类ContinuousExecution和MicroBatchExecution。一时找不到怎么执行到具体的物理计划ContinuousExecution和MicroBatchExecution的,我们就试试反推把。先看看ContinuousExecution的代码。

StreamExecution

StreamExecution是抽象类。其抽象方法runActivatedStream是执行具体的连续流读取任务的,子类会重写该函数。

runStream方法封装了runActivatedStream方法,额外加了些事件通知等处理机制,知道这一点就行了。

StreamingQueryManager

这里先尝试看看StreamingQueryManager是干什么用的,看注释应该是管理所有的StreamingQuery的。

 private def createQuery(...): StreamingQueryWrapper ={

   (sink, trigger) match {

      case (table: SupportsWrite, trigger: ContinuousTrigger) =>
       

        new StreamingQueryWrapper(new ContinuousExecution(

          sparkSession,

          userSpecifiedName.orNull,

          checkpointLocation,

          analyzedPlan,

          table,

          trigger,

          triggerClock,

          outputMode,

          extraOptions,

          deleteCheckpointOnStop))

      case _ =>

        if (operationCheckEnabled) {

          UnsupportedOperationChecker.checkForStreaming(analyzedPlan, outputMode)

        }

        new StreamingQueryWrapper(new MicroBatchExecution(

          sparkSession,

          userSpecifiedName.orNull,

          checkpointLocation,

          analyzedPlan,

          sink,

          trigger,

          triggerClock,

          outputMode,

          extraOptions,

          deleteCheckpointOnStop))

    }

}

对于连续流,返回一个:

  new StreamingQueryWrapper(new ContinuousExecution))

StreamingQueryWrapper的作用,就是将StreamingQuery封装成可序列化的,别的和StreamingQuery没什么区别。这里对于连续流就是包装了ContinuousExecution。

ContinuousExecution

ContinuousExecution看名称应该是对应连续流的物理执行计划的,继承自StreamExecution(抽象类)。看看主要代码其实就是重写了runActivatedStream方法。

 override protected def runActivatedStream(sparkSessionForStream: SparkSession): Unit = {

    val stateUpdate = new UnaryOperator[State] {

      override def apply(s: State) = s match {

        // If we ended the query to reconfigure, reset the state to active.

        case RECONFIGURING => ACTIVE

        case _ => s

      }

    }

    do {

      runContinuous(sparkSessionForStream)

    } while (state.updateAndGet(stateUpdate) == ACTIVE)

    stopSources()

  }

真正的执行逻辑代码在私有方法runContinuous中,这里就不详细展开了,知道了主要流程就可以了。

下面就是要看看ContinuousExecution到底是在哪里被从逻辑计划转换到物理计划的。

搜索全文,找到了StreamingQueryManager.scala这个文件。对了,就是从上面的StreamingQueryManager找到这个ContinuousExecution。

DataStreamWriter

DataStreamWriter是真正触发流计算开始启动执行的地方。

start()方法得到要给StreamingQuery,方法里的关键代码片段:

 df.sparkSession.sessionState.streamingQueryManager.startQuery(

        extraOptions.get("queryName"),

        extraOptions.get("checkpointLocation"),

        df,

        extraOptions.toMap,

        sink,

        outputMode,

        useTempCheckpointLocation = source == "console" || source == "noop",

        recoverFromCheckpointLocation = true,

        trigger = trigger)

跟踪进去到了StreamingQueryManager,看它的startQuery方法。

startQuery方法分为几步:

  1. 调用createQuery方法返回StreamingQuery。

val query = createQuery(

      userSpecifiedName,

      userSpecifiedCheckpointLocation,

      df,

      extraOptions,

      sink,

      outputMode,

      useTempCheckpointLocation,

      recoverFromCheckpointLocation,

      trigger,

      triggerClock)

query就是StreamingQueryWrapper,就是类似这样的代码:

new StreamingQueryWrapper(new ContinuousExecution))

2、启动上一步的query 

try {     

      query.streamingQuery.start()

    } catch {     

    }

这里的代码直接调用到StreamingQuery的父类StreamExecution的start方法。代码定义:

def start(): Unit = {

    logInfo(s"Starting $prettyIdString. Use $resolvedCheckpointRoot to store the query checkpoint.")

    queryExecutionThread.setDaemon(true)

    queryExecutionThread.start()

    startLatch.await()  // Wait until thread started and QueryStart event has been posted

  }

queryExecutionThread线程的定义又是这样的:

val queryExecutionThread: QueryExecutionThread =

    new QueryExecutionThread(s"stream execution thread for $prettyIdString") {

      override def run(): Unit = {

        sparkSession.sparkContext.setCallSite(callSite)

        runStream()

      }

    }

最后在线程中启动runStream这个私有方法。

3、返回query

最后返回query,注意这里的query在上面的代码中已经start运行了。

到此,关于“DataStreamReader和DataStreamWriter怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


名称栏目:DataStreamReader和DataStreamWriter怎么使用
当前地址:http://mswzjz.cn/article/gcgsjd.html

其他资讯