我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

go-zero docker-compose 搭建课件服务(九):http统一返回和集成日志服务

0、索引

go-zero docker-compose 搭建课件服务(九):http统一返回和集成日志服务

兰陵ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

0.1源码地址

https://github.com/liuyuede123/go-zero-courseware

1、http统一返回

一般返回中会有codemessagedata。当请求成功的时候code返回0或者200,message返回success,data为要获取的数据;当请求失败的时候code返回自定义的错误码,message返回展示给前端的错误信息,data为空。

我们将封装一个错误返回的函数,应用到api handler的返回

在user服务中创建了common文件夹,里面存一些公用的方法,创建response/response.go

package response

import (
	"go-zero-courseware/user/common/xerr"
	"net/http"

	"github.com/pkg/errors"
	"github.com/zeromicro/go-zero/core/logx"
	"github.com/zeromicro/go-zero/rest/httpx"
	"google.golang.org/grpc/status"
)

type Response struct {
	Code    uint32      `json:"code"`
	Message string      `json:"message"`
	Data    interface{} `json:"data"`
}

//http返回
func HttpResult(r *http.Request, w http.ResponseWriter, resp interface{}, err error) {

	if err == nil {
		//成功返回
		r := &Response{
			Code:    0,
			Message: "success",
			Data:    resp,
		}
		httpx.WriteJson(w, http.StatusOK, r)
	} else {
		//错误返回
		errcode := uint32(500)
		errmsg := "服务器错误"

		causeErr := errors.Cause(err)                // err类型
		if e, ok := causeErr.(*xerr.CodeError); ok { //自定义错误类型
			//自定义CodeError
			errcode = e.GetErrCode()
			errmsg = e.GetErrMsg()
		} else {
			if gstatus, ok := status.FromError(causeErr); ok { // grpc err错误
				grpcCode := uint32(gstatus.Code())
				errcode = grpcCode
				errmsg = gstatus.Message()
			}
		}

		logx.WithContext(r.Context()).Errorf("【API-ERR】 : %+v ", err)

		httpx.WriteJson(w, http.StatusBadRequest, &Response{
			Code:    errcode,
			Message: errmsg,
			Data:    nil,
		})
	}
}

创建xerr/errors.go文件,定义CodeError结构体

package xerr

import (
	"fmt"
)

/**
常用通用固定错误
*/
type CodeError struct {
	errCode uint32
	errMsg  string
}

//返回给前端的错误码
func (e *CodeError) GetErrCode() uint32 {
	return e.errCode
}

//返回给前端显示端错误信息
func (e *CodeError) GetErrMsg() string {
	return e.errMsg
}

func (e *CodeError) Error() string {
	return fmt.Sprintf("ErrCode:%d,ErrMsg:%s", e.errCode, e.errMsg)
}

func NewErrCodeMsg(errCode uint32, errMsg string) *CodeError {
	return &CodeError{errCode: errCode, errMsg: errMsg}
}

由于api一般调用的rpc的请求,获取到的错误无法展示给前端使用,我们会使用自定义的错误类型。当让rpc中的错误也可能是前端直接可以展示的错误,或者是数据库的某个异常抛出的错误,如果想区分这些错误,可以自己定义业务端code和message做下区分就行。这里我们统一api服务中处理。

当api或者rpc中有一些未知错误抛出的时候我们需要写入到日志中,包括具体的错误信息和堆栈信息。这些后续放到日志服务ELK中可以方便查看。

修改userinfohandler.go、userloginhandler.go、userregisterhandler.go中的返回

...

response.HttpResult(r, w, resp, err)

修改userinfologic.go

...

func (l *UserInfoLogic) UserInfo(req *types.UserInfoRequest) (resp *types.UserInfoResponse, err error) {
	info, err := l.svcCtx.UserRpc.UserInfo(l.ctx, &userclient.UserInfoRequest{
		Id: req.Id,
	})
	if err != nil {
    // 自定义的错误返回
		return nil, xerr.NewErrCodeMsg(500, "用户查询失败")
	}

	return &types.UserInfoResponse{
		Id:        info.Id,
		Username:  info.Username,
		LoginName: info.LoginName,
		Sex:       info.Sex,
	}, nil
}

修改userloginlogic.go

...

func (l *UserLoginLogic) UserLogin(req *types.LoginRequest) (resp *types.LoginResponse, err error) {
	login, err := l.svcCtx.UserRpc.Login(l.ctx, &userclient.LoginRequest{
		LoginName: req.LoginName,
		Password:  req.Password,
	})
	if err != nil {
		return nil, xerr.NewErrCodeMsg(500, "用户登录失败")
	}

	now := time.Now().Unix()
	login.Token, err = l.getJwtToken(l.svcCtx.Config.Auth.AccessSecret, now, l.svcCtx.Config.Auth.AccessExpire, int64(login.Id))
	if err != nil {
    // 返回错误信息,并打印堆栈信息到日志
		return nil, errors.Wrapf(xerr.NewErrCodeMsg(5000, "token生成失败"), "loginName: %s,err:%v", req, err)
	}
	return &types.LoginResponse{
		Id:    login.Id,
		Token: login.Token,
	}, nil
}

...

修改userregisterlogic.go

...

func (l *UserRegisterLogic) UserRegister(req *types.RegisterRequest) (resp *types.RegisterResponse, err error) {
	_, err = l.svcCtx.UserRpc.Register(l.ctx, &userclient.RegisterRequest{
		LoginName: req.LoginName,
		Username:  req.Username,
		Password:  req.Password,
		Sex:       req.Sex,
	})
	if err != nil {
    // 自定义的错误返回
		return nil, xerr.NewErrCodeMsg(5000, "注册用户失败")
	}

	return &types.RegisterResponse{}, nil
}

关于errors.Wrapf

第一个参数是错误信息,第二个是格式化之后的错误信息字符串,args是fromat中的动态参数。最终还是返回我们传入的error,但是会把堆栈信息也打印出来。这个为后面的日志服务做铺垫

func Wrapf(err error, format string, args ...interface{}) error {
	if err == nil {
		return nil
	}
	err = &withMessage{
		cause: err,
		msg:   fmt.Sprintf(format, args...),
	}
	return &withStack{
		err,
		callers(),
	}
}

关于鉴权

对于鉴权,如果鉴权失败,之前是直接返回401状态码,但是我们想同样的返回错误信息和message

此时就需要自定义一个鉴权失败的回调函数

我们在response.go中增加一个鉴权失败的回调函数

...

func JwtUnauthorizedResult(w http.ResponseWriter, r *http.Request, err error) {
	httpx.WriteJson(w, http.StatusUnauthorized, &Response{401, "鉴权失败", nil})
}

然后在api入口程序user.go中修改代码如下

...

func main() {
	flag.Parse()

	var c config.Config
	conf.MustLoad(*configFile, &c)

  // 此处加入鉴权失败的回调
	server := rest.MustNewServer(c.RestConf, rest.WithUnauthorizedCallback(response.JwtUnauthorizedResult))
	defer server.Stop()

	ctx := svc.NewServiceContext(c)
	handler.RegisterHandlers(server, ctx)

	fmt.Printf("Starting server at %s:%d...\n", c.Host, c.Port)
	server.Start()
}

然后我们再看下user的rpc服务

这里我们会引入一个拦截器。什么是拦截器?

定义:UnaryServerInterceptor 提供了一个钩子来拦截服务器上一元 RPC 的执行。 信息包含拦截器可以操作的这个 RPC 的所有信息。 处理程序是包装器服务方法实现。 拦截器负责调用处理程序完成 RPC。

其实就是拦截handler做一些返回前和返回后的处理

我们需要在common中新增一个拦截器方法,新建文件rpcserver/rpcserver.go

package rpcserver

import (
	"context"
	"github.com/pkg/errors"
	"github.com/zeromicro/go-zero/core/logx"
	"go-zero-courseware/user/common/xerr"
	"google.golang.org/grpc"
	"google.golang.org/grpc/codes"
	"google.golang.org/grpc/status"
)

func LoggerInterceptor(ctx context.Context, req interface{}, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp interface{}, err error) {

	resp, err = handler(ctx, req)
	if err != nil {
		causeErr := errors.Cause(err)                // err类型
		if e, ok := causeErr.(*xerr.CodeError); ok { //自定义错误类型
			logx.WithContext(ctx).Errorf("【RPC-SRV-ERR】 %+v", err)

			//转成grpc err
			err = status.Error(codes.Code(e.GetErrCode()), e.GetErrMsg())
		} else {
			logx.WithContext(ctx).Errorf("【RPC-SRV-ERR】 %+v", err)
		}

	}

	return resp, err
}

然后在入口文件user.go中添加一个拦截器

...

s.AddUnaryInterceptors(rpcserver.LoggerInterceptor)

...

课件服务和上面类似,这里就不一一添加修改了

2、集成日志服务

我们需要搭建一个ELK体系的服务,流程图如下:

将会用到以下服务:

服务名 端口号
elasticsearch 9200
kibana 5601
go-stash
filebeat
zookeeper 2181
kafka 9092

docker-compose如下:

user服务中我们引入了日志地址,到我们的宿主机上。之所以这样做,是因为在mac系统上docker的日志文件路径和linux上的不一致。找了半天也没在mac上找到容器的日志。所以用户服务中的日志会写到文件中然后同步到宿主机的data/log目录下。

还有就是filebeat日志中,我们会从宿主机上的日志同步到filebeat指定目录。然后filebeat会同步到kafka

version: '3.5'
# 网络配置
networks:
  backend:
    driver: bridge

# 服务容器配置
services:
  etcd: # 自定义容器名称
    build:
      context: etcd                    # 指定构建使用的 Dockerfile 文件
    environment:
      - TZ=Asia/Shanghai
      - ALLOW_NONE_AUTHENTICATION=yes
      - ETCD_ADVERTISE_CLIENT_URLS=http://etcd:2379
    ports: # 设置端口映射
      - "2379:2379"
    networks:
      - backend
    restart: always

  etcd-manage:
    build:
      context: etcd-manage
    environment:
      - TZ=Asia/Shanghai
    ports:
      - "7000:8080"                    # 设置容器8080端口映射指定宿主机端口,用于宿主机访问可视化web
    depends_on: # 依赖容器
      - etcd                                          # 在 etcd 服务容器启动后启动
    networks:
      - backend
    restart: always

  courseware-rpc: # 自定义容器名称
    build:
      context: courseware                 # 指定构建使用的 Dockerfile 文件
      dockerfile: rpc/Dockerfile
    environment: # 设置环境变量
      - TZ=Asia/Shanghai
    privileged: true
    ports: # 设置端口映射
      - "9400:9400"  # 课件服务rpc端口
    stdin_open: true                     # 打开标准输入,可以接受外部输入
    tty: true
    networks:
      - backend
    restart: always                      # 指定容器退出后的重启策略为始终重启

  courseware-api: # 自定义容器名称
    build:
      context: courseware                  # 指定构建使用的 Dockerfile 文件
      dockerfile: api/Dockerfile
    environment: # 设置环境变量
      - TZ=Asia/Shanghai
    privileged: true
    ports: # 设置端口映射
      - "8400:8400"  # 课件服务api端口
    stdin_open: true                     # 打开标准输入,可以接受外部输入
    tty: true
    networks:
      - backend
    restart: always                      # 指定容器退出后的重启策略为始终重启

  user-rpc: # 自定义容器名称
    build:
      context: user                 # 指定构建使用的 Dockerfile 文件
      dockerfile: rpc/Dockerfile
    environment: # 设置环境变量
      - TZ=Asia/Shanghai
    privileged: true
    volumes:
      - ./data/log/user-rpc:/var/log/go-zero/user-rpc # 日志的映射地址
    ports: # 设置端口映射
      - "9300:9300"  # 课件服务rpc端口
    stdin_open: true                     # 打开标准输入,可以接受外部输入
    tty: true
    networks:
      - backend
    restart: always                      # 指定容器退出后的重启策略为始终重启

  user-api: # 自定义容器名称
    build:
      context: user                  # 指定构建使用的 Dockerfile 文件
      dockerfile: api/Dockerfile
    environment: # 设置环境变量
      - TZ=Asia/Shanghai
    privileged: true
    volumes:
      - ./data/log/user-api:/var/log/go-zero/user-api
    ports: # 设置端口映射
      - "8300:8300"  # 课件服务api端口
    stdin_open: true                     # 打开标准输入,可以接受外部输入
    tty: true
    networks:
      - backend
    restart: always                      # 指定容器退出后的重启策略为始终重启

  elasticsearch:
    build:
      context: ./elasticsearch
    environment:
      - TZ=Asia/Shanghai
      - discovery.type=single-node
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    privileged: true
    ports:
      - "9200:9200"
    networks:
      - backend
    restart: always

  prometheus:
    build:
      context: ./prometheus
    environment:
      - TZ=Asia/Shanghai
    privileged: true
    volumes:
      - ./prometheus/prometheus.yml:/opt/bitnami/prometheus/conf/prometheus.yml  # 将 prometheus 配置文件挂载到容器里
      - ./prometheus/target.json:/opt/bitnami/prometheus/conf/targets.json  # 将 prometheus 配置文件挂载到容器里
    ports:
      - "9090:9090"                     # 设置容器9090端口映射指定宿主机端口,用于宿主机访问可视化web
    networks:
      - backend
    restart: always

  grafana:
    build:
      context: ./grafana
    environment:
      - TZ=Asia/Shanghai
    privileged: true
    ports:
      - "3000:3000"
    networks:
      - backend
    restart: always

  jaeger:
    build:
      context: ./jaeger
    environment:
      - TZ=Asia/Shanghai
      - SPAN_STORAGE_TYPE=elasticsearch
      - ES_SERVER_URLS=http://elasticsearch:9200
      - LOG_LEVEL=debug
    privileged: true
    ports:
      - "6831:6831/udp"
      - "6832:6832/udp"
      - "5778:5778"
      - ":"
      - "4317:4317"
      - "4318:4318"
      - ":"
      - ":"
      - ":"
      - "9411:9411"
    networks:
      - backend
    restart: always

  kibana:
    build:
      context: ./kibana
    environment:
      - elasticsearch.hosts=http://elasticsearch:9200
      - TZ=Asia/Shanghai
    privileged: true
    ports:
      - "5601:5601"
    networks:
      - backend
    restart: always
    depends_on:
      - elasticsearch

  go-stash:
    build:
      context: ./go-stash
    environment:
      - TZ=Asia/Shanghai
    privileged: true
    volumes:
      - ./go-stash/go-stash.yml:/app/etc/config.yaml
    networks:
      - backend
    restart: always
    depends_on:
      - elasticsearch
      - kafka

  filebeat:
    build:
      context: ./filebeat
    environment:
      - TZ=Asia/Shanghai
    entrypoint: "filebeat -e -strict.perms=false"
    privileged: true
    volumes:
      - ./filebeat/filebeat.yml:/usr/share/filebeat/filebeat.yml
      - ./data/log:/var/lib/docker/containers # 宿主机上的日志同步到filebeat指定目录
    networks:
      - backend
    restart: always
    depends_on:
      - kafka

  zookeeper:
    build:
      context: ./zookeeper
    environment:
      - TZ=Asia/Shanghai
    privileged: true
    networks:
      - backend
    ports:
      - "2181:2181"
    restart: always

  kafka:
    build:
      context: ./kafka
    ports:
      - "9092:9092"
    environment:
      - KAFKA_ADVERTISED_HOST_NAME=kafka
      - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
      - KAFKA_AUTO_CREATE_TOPICS_ENABLE=false
      - TZ=Asia/Shanghai
      - ALLOW_PLAINTEXT_LISTENER=yes
    restart: always
    privileged: true
    networks:
      - backend
    depends_on:
      - zookeeper

(项目根目录下自行创建对应的Dokcerfile)

filebeat需要引入配置文件filebeat.yml如下:

其中filebeat需要从宿主机同步数据,就是上面用户服务中生成的日志文件,会同步到filebeat的对应文件中

拉取过来的文件会输出到kafka指定的topic中,我们这里定义的是courseware-log

filebeat.inputs:
  - type: log
    enabled: true
    paths:
      - /var/lib/docker/containers/*/*.log # 此为宿主机同步过来的日志文件

filebeat.config:
  modules:
    path: ${path.config}/modules.d/*.yml
    reload.enabled: false

processors:
  - add_cloud_metadata: ~
  - add_docker_metadata: ~

output.kafka:
  enabled: true
  hosts: ["kafka:9092"]
  #要提前创建topic
  topic: "courseware-log"
  partition.hash:
    reachable_only: true
  compression: gzip
  max_message_bytes: 
  required_acks: 1

用户服务中也需要修改etc下的user.yaml配置,增加日志的配置,输出到data/log目录下

Log:
  Mode: file
  Path: /var/log/go-zero/user-api
  Level: error
Log:
  Mode: file
  Path: /var/log/go-zero/user-rpc
  Level: error

我们启动下相关服务,请求下user-api的接口

然后回到项目中查看data/log中是否生成相关日志

日志正常输出,再到filebeat服务中,查看文件是否同步上去:

# 进入容器
docker exec -it 231bf79f3d5e21cea153bd94bfee0e3c67a693e727d0b660 /bin/sh
# 查看目录
cd /var/lib/docker/containers
ls
user-api  user-rpc

然后我们再到kafka的容器中

# 进入到容器
docker exec -it cb764aeb86e8296a805e47c85f65ac5334c3edfe36e7a39a81ca1bad67f /bin/sh

# 到bin目录下
cd /opt/bitnami/kafka/bin

# 可以看到这些调试脚本
$ ls
connect-distributed.sh	      kafka-cluster.sh		 kafka-consumer-perf-test.sh  kafka-get-offsets.sh	kafka-producer-perf-test.sh    kafka-server-stop.sh		   kafka-verifiable-consumer.sh     zookeeper-server-start.sh
connect-mirror-maker.sh       kafka-configs.sh		 kafka-delegation-tokens.sh   kafka-leader-election.sh	kafka-reassign-partitions.sh   kafka-storage.sh			   kafka-verifiable-producer.sh     zookeeper-server-stop.sh
connect-standalone.sh	      kafka-console-consumer.sh  kafka-delete-records.sh      kafka-log-dirs.sh		kafka-replica-verification.sh  kafka-streams-application-reset.sh  trogdor.sh			    zookeeper-shell.sh
kafka-acls.sh		      kafka-console-producer.sh  kafka-dump-log.sh	      kafka-metadata-shell.sh	kafka-run-class.sh	       kafka-topics.sh			   windows
kafka-broker-api-versions.sh  kafka-consumer-groups.sh	 kafka-features.sh	      kafka-mirror-maker.sh	kafka-server-start.sh	       kafka-transactions.sh		   zookeeper-security-migration.sh
$

先看下有没有创建courseware-log的topic,如果没有就创建一个

$ ./kafka-topics.sh --bootstrap-server kafka:9092 --list
__consumer_offsets
courseware-log

# 没有就创建,创建的命令。最新版的kafka不需要指定zookeeper
./kafka-topics.sh  --create --bootstrap-server kafka:9092 --replication-factor 1 --partitions 1 --topic courseware-log

# 建错了删除用这个
./kafka-topics.sh --delete --bootstrap-server kafka:9092 --topic courseware-log

# 发布消息用这个
./kafka-console-producer.sh --broker-list kafka:9092 --topic courseware-log

# 消费用这个
./kafka-console-consumer.sh --bootstrap-server kafka:9092  --topic courseware-log --from-beginning

我们执行消费脚本看下日志会不会过来。

现在还没有日志进来,我们请求一下接口让接口报错,可以看到日志开始消费了

到这里日志已经流转到kafka中了。

下面是go-stash从kafka拉取日志处理并保存到elasticsearch的流程:

go-stash需要引入配置文件go-stash.yml,内容如下:

参数可参考github go-stash

Clusters:
  - Input:
      Kafka:
        Name: go-stash
        Brokers:
          - "kafka:9092"
        Topics:
          - courseware-log
        Group: pro
        Consumers: 16
    Filters:
      - Action: drop
        Conditions:
          - Key: k8s_container_name
            Value: "-rpc"
            Type: contains
          - Key: level
            Value: info
            Type: match
            Op: and
      - Action: remove_field
        Fields:
          # - message
          - _source
          - _type
          - _score
          - _id
          - "@version"
          - topic
          - index
          - beat
          - docker_container
          - offset
          - prospector
          - source
          - stream
          - "@metadata"
      - Action: transfer
        Field: message
        Target: data
    Output:
      ElasticSearch:
        Hosts:
          - "http://elasticsearch:9200"
        Index: "courseware-{{yyyy-MM-dd}}"

问题:

但是这里mac上又遇到一个问题就是对接go-stash时mac上的docker中会报错

2022/09/08 21:51:10 {"@timestamp":"2022-09-08T21:51:10.346+08:00","level":"error","content":"cpu_linux.go:29 open cpuacct.usage_percpu: no such file or directory"}

具体可以看这里https://github.com/zeromicro/go-zero/issues/311 还没有找到好的解决办法。

后续:

之后又重启了下docker发现问题解决了,同步到es生效了。

接下来我们请求下用户服务的接口,到es查看,索引已经创建,错误信息已经写进去了

然后我们访问http://127.0.0.1:5601/进到kibana后台,点击Discover,并创建索引

搜索到课件服务的索引后点击下一步

选择@timestamp,点击创建

重新点击Discover之后可以看到课件的日志服务创建完成


文章标题:go-zero docker-compose 搭建课件服务(九):http统一返回和集成日志服务
URL标题:http://mswzjz.cn/article/dsoicop.html

其他资讯