十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章将为大家详细讲解有关如何利用Tensorboard绘制网络识别准确率和loss曲线,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联专注于企业营销型网站建设、网站重做改版、上党网站定制设计、自适应品牌网站建设、H5建站、商城网站开发、集团公司官网建设、外贸网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为上党等各大城市提供网站开发制作服务。,直接上代码看吧!
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小和总共有多少个批次 batch_size = 100 n_batch = mnist.train.num_examples // batch_size #定义函数 def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) #平均值 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean))) tf.summary.scalar('stddev', stddev) #标准差 tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) #直方图 #命名空间 with tf.name_scope("input"): #定义两个placeholder x = tf.placeholder(tf.float32,[None,784], name = "x_input") y = tf.placeholder(tf.float32,[None,10], name = "y_input") with tf.name_scope("layer"): #创建一个简单的神经网络 with tf.name_scope('weights'): W = tf.Variable(tf.zeros([784,10]), name='W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]), name='b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W)+b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) with tf.name_scope('loss'): #交叉熵代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction)) tf.summary.scalar('loss', loss) with tf.name_scope('train'): #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中大的值所在的位置 with tf.name_scope('accuracy'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy', accuracy) #合并所有的summary merged = tf.summary.merge_all() with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter("log/", sess.graph) #写入到的位置 for epoch in range(51): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs, y:batch_ys}) writer.add_summary(summary,epoch) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("epoch " + str(epoch)+ " acc " +str(acc))
运行程序,打开命令行界面,切换到 log 所在目录,输入
tensorboard --logdir= --logdir=C:\Users\Administrator\Desktop\Python\log
接着会返回一个链接,类似 http://PC-20160926YCLU:6006
打开谷歌浏览器或者火狐,输入网址即可查看搭建的网络结构以及识别准确率和损失函数的曲线图。
注意:如果对网络进行更改之后,在运行之前应该先删除log下的文件,在Jupyter中应该选择Kernel----->Restar & Run All, 否则新网络会和之前的混叠到一起。因为每次的网址都是一样的,在浏览器刷新页面即可。
关于“如何利用Tensorboard绘制网络识别准确率和loss曲线”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。