十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
凤翔ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:028-86922220(备注:SSL证书合作)期待与您的合作!
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
用plot画二维图像时,默认情况下的横坐标和纵坐标显示的值有时达不到自己的需求,需要借助xticks()和yticks()分别对横坐标x-axis和纵坐标y-axis进行设置。
import numpy as np
import matplotlib.pyplot as plt
x = range(1,13,1)
y = range(1,13,1)
plt.plot(x,y)
plt.show()
此时的x轴和y轴都是只显示偶数,其它的奇数未显示,这样在展示实验效果或放入文章中都会影响其可读性。
为了设置坐标轴的值,增加其可读性,有多种方法。这里介绍的是matplotlib的函数xticks()和yticks()。
扩展资料
基本用法:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 生成x轴上的数据:从-3到3,总共有50个点
x = np.linspace(-1, 1, 50)
# 定义一个线性方程
y1 = 2 * x + 1
# 定义一个二次方程
y2 = x ** 2
# 设置x轴的取值范围为:-1到2
plt.xlim(-1, 2)
# 设置y轴的取值范围为:-1到3
plt.ylim(-1, 3)
# 设置x轴的文本,用于描述x轴代表的是什么
plt.xlabel("I am x")
# 设置y轴的文本,用于描述y轴代表的是什么
plt.ylabel("I am y")
plt.plot(x, y2)
# 绘制红色的线宽为1虚线的线条
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
# 显示图表
plt.show()
参考资料来源:
百度百科——plot
pre
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, *, filternorm=True, filterrad=4.0, resample=None, url=None, data=None, **kwargs)
From:
改以下参数可以对图片效果进行调整:
举个栗子: