我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

go语言map扩容 go map容量

彻底理解Golang Map

本文目录如下,阅读本文后,将一网打尽下面Golang Map相关面试题

站在用户的角度思考问题,与客户深入沟通,找到阆中网站设计与阆中网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计、成都做网站、企业官网、英文网站、手机端网站、网站推广、域名与空间、网页空间、企业邮箱。业务覆盖阆中地区。

Go中的map是一个指针,占用8个字节,指向hmap结构体; 源码 src/runtime/map.go 中可以看到map的底层结构

每个map的底层结构是hmap,hmap包含若干个结构为bmap的bucket数组。每个bucket底层都采用链表结构。接下来,我们来详细看下map的结构

bmap 就是我们常说的“桶”,一个桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的,关于key的定位我们在map的查询和插入中详细说明。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

bucket内存数据结构可视化如下:

注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding字段,节省内存空间。

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

map是个指针,底层指向hmap,所以是个引用类型

golang 有三个常用的高级类型 slice 、map、channel, 它们都是 引用类型 ,当引用类型作为函数参数时,可能会修改原内容数据。

golang 中没有引用传递,只有值和指针传递。所以 map 作为函数实参传递时本质上也是值传递,只不过因为 map 底层数据结构是通过指针指向实际的元素存储空间,在被调函数中修改 map,对调用者同样可见,所以 map 作为函数实参传递时表现出了引用传递的效果。

因此,传递 map 时,如果想修改map的内容而不是map本身,函数形参无需使用指针

map 底层数据结构是通过指针指向实际的元素 存储空间 ,这种情况下,对其中一个map的更改,会影响到其他map

map 在没有被修改的情况下,使用 range 多次遍历 map 时输出的 key 和 value 的顺序可能不同。这是 Go 语言的设计者们有意为之,在每次 range 时的顺序被随机化,旨在提示开发者们,Go 底层实现并不保证 map 遍历顺序稳定,请大家不要依赖 range 遍历结果顺序。

map 本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历 map,需要对 map key 先排序,再按照 key 的顺序遍历 map。

map默认是并发不安全的,原因如下:

Go 官方在经过了长时间的讨论后,认为 Go map 更应适配典型使用场景(不需要从多个 goroutine 中进行安全访问),而不是为了小部分情况(并发访问),导致大部分程序付出加锁代价(性能),决定了不支持。

场景: 2个协程同时读和写,以下程序会出现致命错误:fatal error: concurrent map writes

如果想实现map线程安全,有两种方式:

方式一:使用读写锁 map + sync.RWMutex

方式二:使用golang提供的 sync.Map

sync.map是用读写分离实现的,其思想是空间换时间。和map+RWLock的实现方式相比,它做了一些优化:可以无锁访问read map,而且会优先操作read map,倘若只操作read map就可以满足要求(增删改查遍历),那就不用去操作write map(它的读写都要加锁),所以在某些特定场景中它发生锁竞争的频率会远远小于map+RWLock的实现方式。

golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突 ,出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。在哈希函数的选择上,会在程序启动时,检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。

map有3钟初始化方式,一般通过make方式创建

map的创建通过生成汇编码可以知道,make创建map时调用的底层函数是 runtime.makemap 。如果你的map初始容量小于等于8会发现走的是 runtime.fastrand 是因为容量小于8时不需要生成多个桶,一个桶的容量就可以满足

makemap函数会通过 fastrand 创建一个随机的哈希种子,然后根据传入的 hint 计算出需要的最小需要的桶的数量,最后再使用 makeBucketArray 创建用于保存桶的数组,这个方法其实就是根据传入的 B 计算出的需要创建的桶数量在内存中分配一片连续的空间用于存储数据,在创建桶的过程中还会额外创建一些用于保存溢出数据的桶,数量是 2^(B-4) 个。初始化完成返回hmap指针。

找到一个 B,使得 map 的装载因子在正常范围内

Go 语言中读取 map 有两种语法:带 comma 和 不带 comma。当要查询的 key 不在 map 里,带 comma 的用法会返回一个 bool 型变量提示 key 是否在 map 中;而不带 comma 的语句则会返回一个 value 类型的零值。如果 value 是 int 型就会返回 0,如果 value 是 string 类型,就会返回空字符串。

map的查找通过生成汇编码可以知道,根据 key 的不同类型,编译器会将查找函数用更具体的函数替换,以优化效率:

函数首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

key经过哈希函数计算后,得到的哈希值如下(主流64位机下共 64 个 bit 位):

m: 桶的个数

从buckets 通过 hash m 得到对应的bucket,如果bucket正在扩容,并且没有扩容完成,则从oldbuckets得到对应的bucket

计算hash所在桶编号:

用上一步哈希值最后的 5 个 bit 位,也就是 01010 ,值为 10,也就是 10 号桶(范围是0~31号桶)

计算hash所在的槽位:

用上一步哈希值哈希值的高8个bit 位,也就是 10010111 ,转化为十进制,也就是151,在 10 号 bucket 中寻找** tophash 值(HOB hash)为 151* 的 槽位**,即为key所在位置,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

通过上面找到了对应的槽位,这里我们再详细分析下key/value值是如何获取的:

bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。

通过汇编语言可以看到,向 map 中插入或者修改 key,最终调用的是 mapassign 函数。

实际上插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

mapassign 有一个系列的函数,根据 key 类型的不同,编译器会将其优化为相应的“快速函数”。

我们只用研究最一般的赋值函数 mapassign 。

map的赋值会附带着map的扩容和迁移,map的扩容只是将底层数组扩大了一倍,并没有进行数据的转移,数据的转移是在扩容后逐步进行的,在迁移的过程中每进行一次赋值(access或者delete)会至少做一次迁移工作。

1.判断map是否为nil

每一次进行赋值/删除操作时,只要oldbuckets != nil 则认为正在扩容,会做一次迁移工作,下面会详细说下迁移过程

根据上面查找过程,查找key所在位置,如果找到则更新,没找到则找空位插入即可

经过前面迭代寻找动作,若没有找到可插入的位置,意味着需要扩容进行插入,下面会详细说下扩容过程

通过汇编语言可以看到,向 map 中删除 key,最终调用的是 mapdelete 函数

删除的逻辑相对比较简单,大多函数在赋值操作中已经用到过,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作,将 count 值减 1,将对应位置的 tophash 值置成 Empty

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

1、装载因子超过阈值

源码里定义的阈值是 6.5 (loadFactorNum/loadFactorDen),是经过测试后取出的一个比较合理的因子

我们知道,每个 bucket 有 8 个空位,在没有溢出,且所有的桶都装满了的情况下,装载因子算出来的结果是 8。因此当装载因子超过 6.5 时,表明很多 bucket 都快要装满了,查找效率和插入效率都变低了。在这个时候进行扩容是有必要的。

对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量( 2^B )直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。新 bucket 只是最大数量变为原来最大数量的 2 倍( 2^B * 2 ) 。

2、overflow 的 bucket 数量过多

在装载因子比较小的情况下,这时候 map 的查找和插入效率也很低,而第 1 点识别不出来这种情况。表面现象就是计算装载因子的分子比较小,即 map 里元素总数少,但是 bucket 数量多(真实分配的 bucket 数量多,包括大量的 overflow bucket)

不难想像造成这种情况的原因:不停地插入、删除元素。先插入很多元素,导致创建了很多 bucket,但是装载因子达不到第 1 点的临界值,未触发扩容来缓解这种情况。之后,删除元素降低元素总数量,再插入很多元素,导致创建很多的 overflow bucket,但就是不会触发第 1 点的规定,你能拿我怎么办?overflow bucket 数量太多,导致 key 会很分散,查找插入效率低得吓人,因此出台第 2 点规定。这就像是一座空城,房子很多,但是住户很少,都分散了,找起人来很困难

对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”的方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket。

上面说的 hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中,而调用 growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

如果未迁移完毕,赋值/删除的时候,扩容完毕后(预分配内存),不会马上就进行迁移。而是采取 增量扩容 的方式,当有访问到具体 bukcet 时,才会逐渐的进行迁移(将 oldbucket 迁移到 bucket)

nevacuate 标识的是当前的进度,如果都搬迁完,应该和2^B的长度是一样的

在evacuate 方法实现是把这个位置对应的bucket,以及其冲突链上的数据都转移到新的buckets上。

转移的判断直接通过tophash 就可以,判断tophash中第一个hash值即可

遍历的过程,就是按顺序遍历 bucket,同时按顺序遍历 bucket 中的 key。

map遍历是无序的,如果想实现有序遍历,可以先对key进行排序

为什么遍历 map 是无序的?

如果发生过迁移,key 的位置发生了重大的变化,有些 key 飞上高枝,有些 key 则原地不动。这样,遍历 map 的结果就不可能按原来的顺序了。

如果就一个写死的 map,不会向 map 进行插入删除的操作,按理说每次遍历这样的 map 都会返回一个固定顺序的 key/value 序列吧。但是 Go 杜绝了这种做法,因为这样会给新手程序员带来误解,以为这是一定会发生的事情,在某些情况下,可能会酿成大错。

Go 做得更绝,当我们在遍历 map 时,并不是固定地从 0 号 bucket 开始遍历,每次都是从一个**随机值序号的 bucket 开始遍历,并且是从这个 bucket 的一个 随机序号的 cell **开始遍历。这样,即使你是一个写死的 map,仅仅只是遍历它,也不太可能会返回一个固定序列的 key/value 对了。

Go语言——sync.Map详解

sync.Map是1.9才推荐的并发安全的map,除了互斥量以外,还运用了原子操作,所以在这之前,有必要了解下 Go语言——原子操作

go1.10\src\sync\map.go

entry分为三种情况:

从read中读取key,如果key存在就tryStore。

注意这里开始需要加锁,因为需要操作dirty。

条目在read中,首先取消标记,然后将条目保存到dirty里。(因为标记的数据不在dirty里)

最后原子保存value到条目里面,这里注意read和dirty都有条目。

总结一下Store:

这里可以看到dirty保存了数据的修改,除非可以直接原子更新read,继续保持read clean。

有了之前的经验,可以猜测下load流程:

与猜测的 区别 :

由于数据保存两份,所以删除考虑:

先看第二种情况。加锁直接删除dirty数据。思考下貌似没什么问题,本身就是脏数据。

第一种和第三种情况唯一的区别就是条目是否被标记。标记代表删除,所以直接返回。否则CAS操作置为nil。这里总感觉少点什么,因为条目其实还是存在的,虽然指针nil。

看了一圈貌似没找到标记的逻辑,因为删除只是将他变成nil。

之前以为这个逻辑就是简单的将为标记的条目拷贝给dirty,现在看来大有文章。

p == nil,说明条目已经被delete了,CAS将他置为标记删除。然后这个条目就不会保存在dirty里面。

这里其实就跟miss逻辑串起来了,因为miss达到阈值之后,dirty会全量变成read,也就是说标记删除在这一步最终删除。这个还是很巧妙的。

真正的删除逻辑:

很绕。。。。

goland map底层原理

map 是Go语言中基础的数据结构,在日常的使用中经常被用到。但是它底层是如何实现的呢?

总体来说golang的map是hashmap,是使用数组+链表的形式实现的,使用拉链法消除hash冲突。

golang的map由两种重要的结构,hmap和bmap(下文中都有解释),主要就是hmap中包含一个指向bmap数组的指针,key经过hash函数之后得到一个数,这个数低位用于选择bmap(当作bmap数组指针的下表),高位用于放在bmap的[8]uint8数组中,用于快速试错。然后一个bmap可以指向下一个bmap(拉链)。

Golang中map的底层实现是一个散列表,因此实现map的过程实际上就是实现散表的过程。在这个散列表中,主要出现的结构体有两个,一个叫 hmap (a header for a go map),一个叫 bmap (a bucket for a Go map,通常叫其bucket)。这两种结构的样子分别如下所示:

hmap :

图中有很多字段,但是便于理解map的架构,你只需要关心的只有一个,就是标红的字段: buckets数组 。Golang的map中用于存储的结构是bucket数组。而bucket(即bmap)的结构是怎样的呢?

bucket :

相比于hmap,bucket的结构显得简单一些,标红的字段依然是“核心”,我们使用的map中的key和value就存储在这里。“高位哈希值”数组记录的是当前bucket中key相关的“索引”,稍后会详细叙述。还有一个字段是一个指向扩容后的bucket的指针,使得bucket会形成一个链表结构。例如下图:

由此看出hmap和bucket的关系是这样的:

而bucket又是一个链表,所以,整体的结构应该是这样的:

哈希表的特点是会有一个哈希函数,对你传来的key进行哈希运算,得到唯一的值,一般情况下都是一个数值。Golang的map中也有这么一个哈希函数,也会算出唯一的值,对于这个值的使用,Golang也是很有意思。

Golang把求得的值按照用途一分为二:高位和低位。

如图所示,蓝色为高位,红色为低位。 然后低位用于寻找当前key属于hmap中的哪个bucket,而高位用于寻找bucket中的哪个key。上文中提到:bucket中有个属性字段是“高位哈希值”数组,这里存的就是蓝色的高位值,用来声明当前bucket中有哪些“key”,便于搜索查找。 需要特别指出的一点是:我们map中的key/value值都是存到同一个数组中的。数组中的顺序是这样的:

并不是key0/value0/key1/value1的形式,这样做的好处是:在key和value的长度不同的时候,可 以消除padding(内存对齐)带来的空间浪费 。

现在,我们可以得到Go语言map的整个的结构图了:(hash结果的低位用于选择把KV放在bmap数组中的哪一个bmap中,高位用于key的快速预览,用于快速试错)

map的扩容

当以上的哈希表增长的时候,Go语言会将bucket数组的数量扩充一倍,产生一个新的bucket数组,并将旧数组的数据迁移至新数组。

加载因子

判断扩充的条件,就是哈希表中的加载因子(即loadFactor)。

加载因子是一个阈值,一般表示为:散列包含的元素数 除以 位置总数。是一种“产生冲突机会”和“空间使用”的平衡与折中:加载因子越小,说明空间空置率高,空间使用率小,但是加载因子越大,说明空间利用率上去了,但是“产生冲突机会”高了。

每种哈希表的都会有一个加载因子,数值超过加载因子就会为哈希表扩容。

Golang的map的加载因子的公式是:map长度 / 2^B(这是代表bmap数组的长度,B是取的低位的位数)阈值是6.5。其中B可以理解为已扩容的次数。

当Go的map长度增长到大于加载因子所需的map长度时,Go语言就会将产生一个新的bucket数组,然后把旧的bucket数组移到一个属性字段oldbucket中。注意:并不是立刻把旧的数组中的元素转义到新的bucket当中,而是,只有当访问到具体的某个bucket的时候,会把bucket中的数据转移到新的bucket中。

如下图所示:当扩容的时候,Go的map结构体中,会保存旧的数据,和新生成的数组

上面部分代表旧的有数据的bucket,下面部分代表新生成的新的bucket。蓝色代表存有数据的bucket,橘黄色代表空的bucket。

扩容时map并不会立即把新数据做迁移,而是当访问原来旧bucket的数据的时候,才把旧数据做迁移,如下图:

注意:这里并不会直接删除旧的bucket,而是把原来的引用去掉,利用GC清除内存。

map中数据的删除

如果理解了map的整体结构,那么查找、更新、删除的基本步骤应该都很清楚了。这里不再赘述。

值得注意的是,找到了map中的数据之后,针对key和value分别做如下操作:

1

2

3

4

1、如果``key``是一个指针类型的,则直接将其置为空,等待GC清除;

2、如果是值类型的,则清除相关内存。

3、同理,对``value``做相同的操作。

4、最后把key对应的高位值对应的数组index置为空。

golang变量(二)——map和slice详解

衍生类型,interface{} , map, [] ,struct等

map类似于java的hashmap,python的dict,php的hash array。

常规的for循环,可以用for k,v :=range m {}. 但在下面清空有一个坑注意:

著名的map[string]*struct 副本问题

结果:

Go 中不存在引用传递,所有的参数传递都是值传递,而map是等同于指针类型的,所以在把map变量传递给函数时,函数对map的修改,也会实质改变map的值。

slice类似于其他语言的数组(list,array),slice初始化和map一样,这里不在重复

除了Pointer数组外,len表示使用长度,cap是总容量,make([]int, len, cap)可以预申请 比较大的容量,这样可以减少容量拓展的消耗,前提是要用到。

cap是计算切片容量,len是计算变量长度的,两者不一样。具体例子如下:

结果:

分析:cap是计算当前slice已分配的容量大小,采用的是预分配的伙伴算法(当容量满时,拓展分配一倍的容量)。

append是slice非常常用的函数,用于添加数据到slice中,但如果使用不好,会有下面的问题:

预期是[1 2 3 4 5 6 7 8 9 10], [1 2 3 4 5 6 7 8 9 10 11 12],但实际结果是:

注意slice是值传递,修改一下:

输出如下:

== 只能用于判断常规数据类型,无法使用用于slice和map判断,用于判断map和slice可以使用reflect.DeepEqual,这个函数用了递归来判断每层的k,v是否一致。

当然还有其他方式,比如转换成json,但小心有一些异常的bug,比如html编码,具体这个json问题,待后面在分析。


当前名称:go语言map扩容 go map容量
当前网址:http://mswzjz.cn/article/dopphsc.html

其他资讯