我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python多维函数拟合 matlab拟合函数

python polyfit函数怎么使用

用polyfit(X,Y,1)得到的拟合函数只能得到a,b,但不能得到线性相关系数R^2。如想要得到其线性相关系数,可以用regress(y,X),其使用格式

创新互联公司是一家集网站建设,华宁企业网站建设,华宁品牌网站建设,网站定制,华宁网站建设报价,网络营销,网络优化,华宁网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

[b,bint,r,rint,stats]

=

regress(y,X);

b——拟合系数

bint——b的置信区间

r——残差值

rint——r的置信区间

stats——检验统计量,第一个就是相关系数

例如:

x=[。。。];y=[。。。]

X=[x

ones(n,1)];

%x的行数(列数)

[b,bint,r,rint,stats]

=

regress(y,X);

python中用polyfit拟合出的函数怎么能直接调用?

首先分两种情况:

1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可。

2.在.py文件中编写,结束函数只需要不再缩进即可

调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以

r=functionA(var1)

附:测试代码(python3运行通过)

# -*- coding:utf-8 -*-

#author:zfxcx

def pt():

print("hello")

pt()

Python怎么做最优化

一、概观

scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:

1.非线性最优化

fmin -- 简单Nelder-Mead算法

fmin_powell -- 改进型Powell法

fmin_bfgs -- 拟Newton法

fmin_cg -- 非线性共轭梯度法

fmin_ncg -- 线性搜索Newton共轭梯度法

leastsq -- 最小二乘

2.有约束的多元函数问题

fmin_l_bfgs_b ---使用L-BFGS-B算法

fmin_tnc ---梯度信息

fmin_cobyla ---线性逼近

fmin_slsqp ---序列最小二乘法

nnls ---解|| Ax - b ||_2 for x=0

3.全局优化

anneal ---模拟退火算法

brute --强力法

4.标量函数

fminbound

brent

golden

bracket

5.拟合

curve_fit-- 使用非线性最小二乘法拟合

6.标量函数求根

brentq ---classic Brent (1973)

brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名

bisect ---二分法

newton ---牛顿法

fixed_point

7.多维函数求根

fsolve ---通用

broyden1 ---Broyden’s first Jacobian approximation.

broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixing

excitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数

line_search ---找到满足强Wolfe的alpha值

check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化

fmin完整的调用形式是:

fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。

from scipy.optimize import fmin #引入优化包def myfunc(x):

return x**2-4*x+8 #定义函数

x0 = [1.3] #猜一个初值

xopt = fmin(myfunc, x0) #求解

print xopt #打印结果

运行之后,给出的结果是:

Optimization terminated successfully.

Current function value: 4.000000

Iterations: 16

Function evaluations: 32

[ 2.00001953]

程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。

除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:

from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):

return x**2-4*x+8

x0 = [1.3]

xopt1 = fmin(myfunc, x0)

print xopt1

print

xopt2 = fmin_powell(myfunc, x0)

print xopt2

print

xopt3 = fmin_bfgs(myfunc, x0)

print xopt3

print

xopt4 = fmin_cg(myfunc,x0)

print xopt4

给出的结果是:

Optimization terminated successfully.

Current function value: 4.000000

Iterations: 16

Function evaluations: 32

[ 2.00001953]

Optimization terminated successfully.

Current function value: 4.000000

Iterations: 2

Function evaluations: 53

1.99999999997

Optimization terminated successfully.

Current function value: 4.000000

Iterations: 2

Function evaluations: 12

Gradient evaluations: 4

[ 2.00000001]

Optimization terminated successfully.

Current function value: 4.000000

Iterations: 2

Function evaluations: 15

Gradient evaluations: 5

[ 2.]

我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。

在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。

有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

python拟合指数函数初始值如何设定

求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x),拟合出Ex和En系数。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的。吻合程度用相关系数来衡量,即R^2。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值。 2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素。 3、先来使用append函数对已经创建的列表添加元素,具体如下图所示,会自动在列表的最后的位置添加一个元素。 4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式。 5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置,第二个参数即为插入的元素。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值,也可以不设定参数的初值。

一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大,说明数据和函数不太匹配,需要对函数进行改正。X0的迭代初始值选择与求解方程,有着密切的关系。不同的初始值得出的系数是完全不一样的。这要通过多次选择和比较,才能得到较为合理的初值。一般的方法,可以通过随机数并根据方程的特性来初选。

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:


名称栏目:python多维函数拟合 matlab拟合函数
本文URL:http://mswzjz.cn/article/dooipgc.html

其他资讯