我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python搜索函数 python字符串的索引和查找函数

python如何查找小于9的元素

在Python中,每次取最大或者最小元素比较容易,直接用max或者min函数就行,如下面代码:

创新互联建站-专业网站定制、快速模板网站建设、高性价比秀洲网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式秀洲网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖秀洲地区。费用合理售后完善,10余年实体公司更值得信赖。

#Input:

a = [1,3,4,3,7,3,9,3,1,2]

print('max a is:', max(a))

print('min a is:', min(a))

#output:

max a is: 9

min a is: 1

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

但是有时候我们需要输出最大或最小的N个数,这样的话如果只是用max和min的话就需要加一层循环,比较麻烦,这个时候可以考虑用nlargest和nsmallest函数了,如下代码:

#Input:

import heapq

a = [1,3,4,3,7,3,9,3,1,2]

print('3-largest a is:', heapq.nlargest(3,a))

print('3-smallest a is:', heapq.nsmallest(3,a))

#output:

3-largest a is: [9, 7, 4]

3-smallest a is: [1, 1, 2]

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

通过上面代码就可以输出N个最大或最小值了,当然,对于列表来说,可以通过sorted函数进行排序后再通过切片的方法也行,如下代码:

#Input:

a = [1,3,4,3,7,3,9,3,1,2]

print('3-smallest a is:', sorted(a)[:3])

print('3-largest a is:', sorted(a)[-3:])

#output:

3-smallest a is: [1, 1, 2]

3-largest a is: [4, 7, 9]

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

这个方法也非常的简单,同时也不需要再加载别的扩展包。

python中pos函数用法

Pos()功能在一个字符串中查找所包含的另一个字符串的起始位置。语法Pos ( string1, string2 {, start } )

参数string1:string类型,指定要从中查找子串string2的字符串string2:string类型,指定要在string1中查找的字符串start:long类型,可选项,指定从string1的第几个字符开始查找。缺省值为1返回值Long。函数执行成功时返回在start位置后string2在string1中第一次出现的起始位置。如果在string1中按指定要求未找到string2、或start的值超过了string1的长度,那么Pos()函数返回0。如果任何参数的值为NULL,Pos()函数返回NULL。用法Pos()函数在字符串查找时区分大小写,因此,"aa"不匹配"AA"。

拓展资料:

公式的运用

一、数字处理

1、取绝对值函数

公式:=ABS(数字)

2、取整函数

公式:=INT(数字)

3、四舍五入函数

公式:=ROUND(数字,小数位数)

二、判断公式

1、如果计算的结果值错误那么显示为空

公式:=IFERROR(数字/数字,)

说明:如果计算的结果错误则显示为空,否则正常显示。

2、IF语句的多条件判定及返回值

公式:IF(AND(单元格(逻辑运算符)数值,指定单元格=返回值1),返回值2,)

说明:所有条件同时成立时用AND,任一个成立用OR函数。

三、常用的统计公式

1、统计在两个表格中相同的内容

公式:B2=COUNTIF(数据源:位置,指定的,目标位置)

说明:如果返回值大于0说明在另一个表中存在,0则不存在。

如果,在此示例中所用到的公式为:B2=COUNTIF(Sheet15!A:A,A2)

2、统计不重复的总数据

公式:C2=SUMPRODUCT(1/COUNTIF(A2:A8,A2:A8))

说明:用COUNTIF函数统计出源数据中每人的出现次数,并用1除的方式把变成分数,最后再相加。

四、数据求和公式

1、隔列求和的应用

公式:H3=SUMIF($A$2:$G$2,H$2,A3:G3)或=SUMPRODUCT((MOD(COLUMN(B3:G3),2)=0)*B3:G3)

说明:如果在标题行中没有规则就可以用第2个公式

2、单条件应用之求和

公式:F2=SUMIF(A:A,C:C)

说明:这是SUMIF函数的最基础的用法

五、查找与引用公式

1、单条件查找

说明:VLOOKUP是excel中最常用的查找方式

六、字符串处理公式

1、多单元格字符串的合并

说明:Phonetic函数只能合并字符型数据,不能合并数值。

2、截取结果3位之外的部分

说明:LEN计算总长度,LEFT从左边截总长度-3个。

一文秒懂python正则表达式常用函数

01 Re概览

Re模块是python的内置模块,提供了正则表达式在python中的所有用法,默认安装位置在python根目录下的Lib文件夹(如 ..\Python\Python37\Lib)。主要提供了3大类字符串操作方法:

字符查找/匹配

字符替换

字符分割

由于是面向字符串类型的模块,就不得不提到字符串编码类型。re模块中,模式串和搜索串既可以是 Unicode 字符串 (常用str类型) ,也可以是8位字节串 (bytes,2位16进制数字,例如\xe5) , 但要求二者必须是同类型字符串。

02 字符串查找/匹配

预编译:compile

在介绍查找和匹配函数前,首先需要知道re的compile函数,该函数可以将一个模式串编译成正则表达式类型,以便后续快速匹配和复用

import re pattern = re.compile(r'[a-z]{2,5}') type(pattern) #re.Pattern

此例创建了一个正则表达式式对象 (re.pattern) ,命名为pattern,用于匹配2-5位小写字母的模式串。后续在使用其他正则表达式函数时,即可使用pattern进行方法调用。

匹配:match

match函数用于从文本串的起始位置开始匹配,若匹配成功,则返回相应的匹配对象,此时可调用group()方法返回匹配结果,也可用span()方法返回匹配起止下标区间;否则返回None

import re pattern = re.compile(r'[a-z]{2,5}') text1 = 'this is a re test' res = pattern.match(text1) print(res) # if res:  print(res.group()) #this  print(res.span()) #(0, 4) text2 = '是的, this is a re test' print(pattern.match(text2))#None

match函数还有一个变形函数fullmatch,当且仅当模式串与文本串刚好全部匹配时,返回一个匹配对象,否则返回None

搜索:search

match只提供了从文本串起始位置匹配的结果,如果想从任意位置匹配,则可调用search方法,与match方法类似,当任意位置匹配成功,则立即返回一个匹配对象,也可调用span()方法获取起止区间、调用group方法获得匹配文本串

import re pattern = re.compile(r'\s[a-z]{2}') text1 = 'this is a re test' res = pattern.search(text1) print(res) # if res:  print(res.group()) #is  print(res.span()) #(4, 7) pattern2 = re.compile(r'\s[a-z]{5}') text2 = '是的,this is a re test' print(pattern2.search(text2))#None

match和search均用于匹配单个结果,唯一区别在于前者是从起始位置开始匹配,而后者从任意位置匹配,匹配成功则返回一个match对象。

全搜索:findall/finditer

几乎是最常用的正则表达式函数,用于寻找所有匹配的结果,例如在爬虫信息提取中,可非常方便地提取所有匹配字段

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.findall(text1) print(res) #[' is', ' re', ' test']

findall返回的是一个列表对象类型,当无匹配对象时,返回一个空列表。为了避免因同时返回大量匹配结果占用过多内存,可以调用finditer函数返回一个迭代器类型,其中每个迭代元素是一个match对象,可继续调用group和span方法获取相应结果

import re pattern = re.compile(r'\s[a-z]{2,5}') text1 = 'this is a re test' res = pattern.finditer(text1) for r in res:  print(r.group()) """  is  re  test """

当匹配模式串较为简单或者仅需单词调用时,上述所有方法也可直接调用re类函数,而无需事先编译。此时各方法的第一个参数为模式串。

import re pattern = re.compile(r'\d{2,5}') text = 'this is re test' re.findall('[a-z]+', text) #['this', 'is', 're', 'test'] 03 字符串替换/分割

替换:sub/subn

当需要对文本串进行条件替换时,可调用re.sub实现 (当然也可先编译后再用调用实例方法) ,相应参数分别为模式串、替换格式、文本串,还可以通过增加缺省参数限定替换次数和匹配模式。通过在模式串进行分组,可实现字符串的格式化替换(类似字符串的format方法),以实现特定任务。

import re text = 'today is 2020-03-05' print(re.sub('-', '', text)) #'today is 20200305' print(re.sub('-', '', text, 1)) #'today is 202003-05' print(re.sub('(\d{4})-(\d{2})-(\d{2})', r'\2/\3/\1', text)) #'today is 03/05/2020'

re.sub的一个变形方法是re.subn,区别是返回一个2元素的元组,其中第一个元素为替换结果,第二个为替换次数

import re text = 'today is 2020-03-05' print(re.subn('-', '', text)) #('today is 20200305', 2)

分割:split

还可以调用正则表达式实现字符串的特定分割,相当于.split()方法的一个加强版,实现特定模式的分割,返回一个切割后的结果列表

import re text = 'today is a re test, what do you mind?' print(re.split(',', text)) #['today is a re test', ' what do you mind?'] 04 总结

python中的re模块提供了正则表达式的常用方法,每种方法都包括类方法调用(如re.match)或模式串的实例调用(pattern.match)2种形式

常用的匹配函数:match/fullmatch

常用的搜索函数:search/findall/finditer

常用的替换函数:sub/subn

常用的切割函数:split

还有其他很多方法,但不是很常用,具体可参考官方文档

另外,python还有第三方正则表达式库regex可供选择

到此这篇关于一文秒懂python正则表达式常用函数的文章就介绍到这了,希望大家以后多多支持!

python中count函数怎么用

Python count()方法用于统计字符串里某个字符或子字符串出现的次数,可选参数为在字符串搜索的开始与结束位置。

语法

count()方法语法:

str.count(sub, start= 0,end=len(string))

参数

sub -- 搜索的子字符串

start -- 字符串开始搜索的位置,默认为第一个字符,第一个字符索引值为0

end -- 字符串中结束搜索的位置,字符中第一个字符的索引为0,默认为字符串的最后一个位置。

返回值

该方法返回子字符串在字符串中出现的次数。


网页题目:python搜索函数 python字符串的索引和查找函数
转载来于:http://mswzjz.cn/article/doohjjs.html

其他资讯