十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
#include stdio.h
创新互联公司是一家专注于做网站、网站制作与策划设计,石棉网站建设哪家好?创新互联公司做网站,专注于网站建设10余年,网设计领域的专业建站公司;建站业务涵盖:石棉等地区。石棉做网站价格咨询:028-86922220
#include math.h
#include stdlib.h
#include time.h
float f(float x)
{
return x * x;
}
void main()
{
float x[10];
float f1, f2;
int i, j;
float fmax;
int xfmax;
srand(time(NULL));
xfmax = 0;
x[0] = 15.0f;
f1 = f(x[0]);
f2 = f1 + 1.0f;
for (j = 0; fabs(f1 - f2) = 0.0001f || j 50; j++)
{
for (i = 0; i 10; i++)
{
if (i != xfmax)
{
x[i] = -1;
while (!(x[i] = 0 x[i] = 30))
{
x[i] = x[xfmax] + ((float)rand() / RAND_MAX * 2 - 1) * (15.0f / (j * 2 + 1));
}
}
}
xfmax = -1;
for (i = 0; i 10; i++)
{
if (xfmax 0 || fmax f(x[i]))
{
fmax = f(x[i]);
xfmax = i;
}
}
f2 = f1;
f1 = fmax;
}
printf("f(%f) = %f\n", x[xfmax], fmax);
}
一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。
/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the */
/* fitness of an individual is the same as the value of the */
/* objective function */
/**************************************************************************/
#include stdio.h
#include stdlib.h
#include math.h
/* Change any of these parameters to match your needs */
#define POPSIZE 50 /* population size */
#define MAXGENS 1000 /* max. number of generations */
#define NVARS 3 /* no. of problem variables */
#define PXOVER 0.8 /* probability of crossover */
#define PMUTATION 0.15 /* probability of mutation */
#define TRUE 1
#define FALSE 0
int generation; /* current generation no. */
int cur_best; /* best individual */
FILE *galog; /* an output file */
struct genotype /* genotype (GT), a member of the population */
{
double gene[NVARS]; /* a string of variables */
double fitness; /* GT's fitness */
double upper[NVARS]; /* GT's variables upper bound */
double lower[NVARS]; /* GT's variables lower bound */
double rfitness; /* relative fitness */
double cfitness; /* cumulative fitness */
};
struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */
/* Declaration of procedures used by this genetic algorithm */
void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);
/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/
void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;
if ((infile = fopen("gadata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}
/* initialize variables within the bounds */
for (i = 0; i NVARS; i++)
{
fscanf(infile, "%lf",lbound);
fscanf(infile, "%lf",ubound);
for (j = 0; j POPSIZE; j++)
{
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],
population[j].upper[i]);
}
}
fclose(infile);
}
/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/
double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}
/*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1]^2-x[1]*x[2]+x[3] */
/*************************************************************/
void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];
for (mem = 0; mem POPSIZE; mem++)
{
for (i = 0; i NVARS; i++)
x[i+1] = population[mem].gene[i];
population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
}
}
/***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a copy of the best individual */
/***************************************************************/
void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best individual */
for (mem = 0; mem POPSIZE; mem++)
{
if (population[mem].fitness population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
/* once the best member in the population is found, copy the genes */
for (i = 0; i NVARS; i++)
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}
/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/
void elitist()
{
int i;
double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */
best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i POPSIZE - 1; ++i)
{
if(population[i].fitness population[i+1].fitness)
{
if (population[i].fitness = best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1].fitness = worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}
}
else
{
if (population[i].fitness = worst)
{
worst = population[i].fitness;
worst_mem = i;
}
if (population[i+1].fitness = best)
{
best = population[i+1].fitness;
best_mem = i + 1;
}
}
}
/* if best individual from the new population is better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */
if (best = population[POPSIZE].fitness)
{
for (i = 0; i NVARS; i++)
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
}
else
{
for (i = 0; i NVARS; i++)
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
}
}
/**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/
void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;
/* find total fitness of the population */
for (mem = 0; mem POPSIZE; mem++)
{
sum += population[mem].fitness;
}
/* calculate relative fitness */
for (mem = 0; mem POPSIZE; mem++)
{
population[mem].rfitness = population[mem].fitness/sum;
}
population[0].cfitness = population[0].rfitness;
/* calculate cumulative fitness */
for (mem = 1; mem POPSIZE; mem++)
{
population[mem].cfitness = population[mem-1].cfitness +
population[mem].rfitness;
}
/* finally select survivors using cumulative fitness. */
for (i = 0; i POPSIZE; i++)
{
p = rand()%1000/1000.0;
if (p population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j POPSIZE;j++)
if (p = population[j].cfitness
ppopulation[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
/* once a new population is created, copy it back */
for (i = 0; i POPSIZE; i++)
population[i] = newpopulation[i];
}
/***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/
void crossover(void)
{
int i, mem, one;
int first = 0; /* count of the number of members chosen */
double x;
for (mem = 0; mem POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x PXOVER)
{
++first;
if (first % 2 == 0)
Xover(one, mem);
else
one = mem;
}
}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/
void Xover(int one, int two)
{
int i;
int point; /* crossover point */
/* select crossover point */
if(NVARS 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i point; i++)
swap(population[one].gene[i], population[two].gene[i]);
}
}
/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/
void swap(double *x, double *y)
{
double temp;
temp = *x;
*x = *y;
*y = temp;
}
/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/
void mutate(void)
{
int i, j;
double lbound, hbound;
double x;
for (i = 0; i POPSIZE; i++)
for (j = 0; j NVARS; j++)
{
x = rand()%1000/1000.0;
if (x PMUTATION)
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
}
}
}
/***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/
。。。。。
代码太多 你到下面呢个网站看看吧
void main(void)
{
int i;
if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;
fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generationMAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");
for (i = 0; i NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
首先y=x*x在[0,31]这个函数的极值是取31的时候,用遗传算法来解答这样的问题是有点多余的。遗传算法的主要步骤是4步,初始化种群,选择,交叉,变异。这里说的淘汰函数,很可能就是在选择选择算子,这个算子是根据最适合最优先的算法来实现。举个简单的例子,你要用数字进行遗传算法,肯定得把他转化为2进制的染色体,【0-31】就是从00000-11111,每条染色体5个基因。对于选择运算来说,每次要从种群选择最优的几个,第一次完全是随机的。假如随机选4个染色体,选的4条染色体是1,2,3,4。很明显他们的值是1,4,9,16,总和是30,那么选择4的概率就是30分之16,这样就可以尽可能的选择大的数值。这里的淘汰域3,可能是每次淘汰3条染色体,或者每次只选择3条最优的染色体,视其选择的条数而定。我看在程序里没有用到这个东西。遗传算法以及进化算法不限定于特殊的程序,每个人有不同的理解,不必拘泥于概念。
需要很多的子函数 %子程序:新物种交叉操作,函数名称存储为crossover.m function scro=crossover(population,seln,pc); BitLength=size(population,2); pcc=IfCroIfMut(pc);%根据交叉概率决定是否进行交叉操作,1则是,0则否 if pcc==1 chb=round(rand*(BitLength-2))+1;%在[1,BitLength-1]范围内随机产生一个交叉位 scro(1,:)=[population(seln(1),1:chb) population(seln(2),chb+1:BitLength)] scro(2,:)=[population(seln(2),1:chb) population(seln(1),chb+1:BitLength)] else scro(1,:)=population(seln(1),:); scro(2,:)=population(seln(2),:); end %子程序:计算适应度函数,函数名称存储为fitnessfun.m function [Fitvalue,cumsump]=fitnessfun(population); global BitLength global boundsbegin global boundsend popsize=size(population,1);%有popsize个个体 for i=1:popsize x=transform2to10(population(i,:));%将二进制转换为十进制 %转化为[-2,2]区间的实数 xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1); Fitvalue(i)=targetfun(xx);%计算函数值,即适应度 end %给适...
望采纳!