十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
1
创新互联专注于长清企业网站建设,响应式网站开发,购物商城网站建设。长清网站建设公司,为长清等地区提供建站服务。全流程定制网站,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务
len(list)
列表元素个数
2
max(list)
返回列表元素最大值
3
min(list)
返回列表元素最小值
4
list(seq)
将元组转换为列表
序号
方法
1
list.append(obj)
在列表末尾添加新的对象
2
list.count(obj)
统计某个元素在列表中出现的次数
3
list.extend(seq)
在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)
4
list.index(obj)
从列表中找出某个值第一个匹配项的索引位置
5
list.insert(index, obj)
将对象插入列表
6
list.pop([index=-1])
移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
7
list.remove(obj)
移除列表中某个值的第一个匹配项
8
list.reverse()
反向列表中元素
9
list.sort( key=None, reverse=False)
对原列表进行排序
10
list.clear()
清空列表
11
list.copy()
复制列表
举例2:
运行结果:
运行结果:
定义:
调用:
我们经常在看别人的代码中,经常出现def(*args, **kwargs)这样的表现形式:
外部变量被改(x由100改为101):
内部变量外部也可用:
统计程序中的变量,返回的是个字典
结果:
lambda版本写法:
结果:
举例:
我们这次的任务是利用Python来模拟抛硬币的情况,并且记录正面朝上占所有试验中的比率,大家是不是想起了课堂中提到过的蒲丰,皮尔逊等人做的试验?当然,我们现在已经不再需要再去扔几千次,几万次硬币了;Python为我们提供了一个相当便捷的解决方案。Python 的randint(0,1)函数可以等概率,随机地返回0与1两个数,我们可以将返回的数值0记为硬币的反面,1记为硬币的正面,所以问题就转换成了:统计大量重复试验中,结果为1占总试验次数的比例。
简单地画一个流程图,希望有助于大家理解。
*流程图是网上使用ProcessOn画的,一个免费的在线流程图绘制平台,简单容易上手,强烈安利给大家~
废话不多说,上图:
可以看见,随着硬币投掷次数的增加,正面朝上的几率逐渐稳定在0.5,这就是我们在课堂上讲过的内容:在重复试验中,我们可以使用频率的稳定值作为事件发生的概率。
怎么样,是不是学到了一招?
在这个程序的基础上,我相信大家有能力进行进一步地延伸与发散。
大家可以尝试着去完成这样三个问题:
1,比较一下当投掷次数为100次,1000次与10000次的图像差别(提示:为了使区别更加显著,大家可以尝试将X轴使用对数坐标表示)
好的,就先写到这里,感觉有意思的话点个赞再走呗~
抛出异常是停止运行这个函数中的代码。
哈希算法将一个不定长的输入,通过散列函数变换成一个定长的输出,即散列值。是一种信息摘要算法。对象的hash值比原对象拥有更低的内存复杂度。
它不同于加密。哈希是将目标文本转换成具有相同长度的,不可逆的杂凑字符串,而加密则是将文本转换为具有相同长度的,可逆的密文。哈希算法是不可逆的,只能由输入产生输出,不能由输出产生输入。而加密则是可逆的。即可以从输入产生输出,也可以反过来从输出推出输入。