贝锐智能攀枝花建站部专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

go语言异步调用 go异步实现高并发请求

一学就会,手把手教你用Go语言调用智能合约

智能合约调用是实现一个 DApp 的关键,一个完整的 DApp 包括前端、后端、智能合约及区块 链系统,智能合约的调用是连接区块链与前后端的关键。

10年积累的网站设计制作、做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有汨罗免费网站建设让你可以放心的选择与我们合作。

我们先来了解一下智能合约调用的基础原理。智能合约运行在以太坊节点的 EVM 中。因此要 想调用合约必须要访问某个节点。

以后端程序为例,后端服务若想连接节点有两种可能,一种是双 方在同一主机,此时后端连接节点可以采用 本地 IPC(Inter-Process Communication,进 程间通信)机制,也可以采用 RPC(Remote Procedure Call,远程过程调用)机制;另 一种情况是双方不在同一台主机,此时只能采用 RPC 机制进行通信。

提到 RPC, 读者应该对 Geth 启动参数有点印象,Geth 启动时可以选择开启 RPC 服务,对应的 默认服务端口是 8545。。

接着,我们来了解一下智能合约运行的过程。

智能合约的运行过程是后端服务连接某节点,将 智能合约的调用(交易)发送给节点,节点在验证了交易的合法性后进行全网广播,被矿工打包到 区块中代表此交易得到确认,至此交易才算完成。

就像数据库一样,每个区块链平台都会提供主流 开发语言的 SDK(Software Development Kit,软件开发工具包),由于 Geth 本身就是用 Go 语言 编写的,因此若想使用 Go 语言连接节点、发交易,直接在工程内导入 go-ethereum(Geth 源码) 包就可以了,剩下的问题就是流程和 API 的事情了。

总结一下,智能合约被调用的两个关键点是节点和 SDK。

由于 IPC 要求后端与节点必须在同一主机,所以很多时候开发者都会采用 RPC 模式。除了 RPC,以太坊也为开发者提供了 json- rpc 接口,本文就不展开讨论了。

接下来介绍如何使用 Go 语言,借助 go-ethereum 源码库来实现智能合约的调用。这是有固定 步骤的,我们先来说一下总体步骤,以下面的合约为例。

步骤 01:编译合约,获取合约 ABI(Application Binary Interface,应用二进制接口)。 单击【ABI】按钮拷贝合约 ABI 信息,将其粘贴到文件 calldemo.abi 中(可使用 Go 语言IDE 创建该文件,文件名可自定义,后缀最好使用 abi)。

最好能将 calldemo.abi 单独保存在一个目录下,输入“ls”命令只能看到 calldemo.abi 文件,参 考效果如下:

步骤 02:获得合约地址。注意要将合约部署到 Geth 节点。因此 Environment 选择为 Web3 Provider。

在【Environment】选项框中选择“Web3 Provider”,然后单击【Deploy】按钮。

部署后,获得合约地址为:0xa09209c28AEf59a4653b905792a9a910E78E7407。

步骤 03:利用 abigen 工具(Geth 工具包内的可执行程序)编译智能合约为 Go 代码。abigen 工具的作用是将 abi 文件转换为 Go 代码,命令如下:

其中各参数的含义如下。 (1)abi:是指定传入的 abi 文件。 (2)type:是指定输出文件中的基本结构类型。 (3)pkg:指定输出文件 package 名称。 (4)out:指定输出文件名。 执行后,将在代码目录下看到 funcdemo.go 文件,读者可以打开该文件欣赏一下,注意不要修改它。

步骤 04:创建 main.go,填入如下代码。 注意代码中 HexToAddress 函数内要传入该合约部署后的地址,此地址在步骤 01 中获得。

步骤 04:设置 go mod,以便工程自动识别。

前面有所提及,若要使用 Go 语言调用智能合约,需要下载 go-ethereum 工程,可以使用下面 的指令:

该指令会自动将 go-ethereum 下载到“$GOPATH/src/github.com/ethereum/go-ethereum”,这样还算 不错。不过,Go 语言自 1.11 版本后,增加了 module 管理工程的模式。只要设置好了 go mod,下载 依赖工程的事情就不必关心了。

接下来设置 module 生效和 GOPROXY,命令如下:

在项目工程内,执行初始化,calldemo 可以自定义名称。

步骤 05:运行代码。执行代码,将看到下面的效果,以及最终输出的 2020。

上述输出信息中,可以看到 Go 语言会自动下载依赖文件,这就是 go mod 的神奇之处。看到 2020,相信读者也知道运行结果是正确的了。

golang http server如何设置request的context超时

main函数

handler函数

在handler函数里面从r.Context生成一个新的context,并传递给功能函数GetUser(ctx context).

功能函数

在功能函数里面,异步方式调用起来具体的实现功能,然后等待在ctx.Done()或者c里面有数据。

使用curl工具发起client请求:

go语言--Goroutines

1、goroutine:在go语言中,每一个并发的执行单元叫做goroutine,如果一个程序中包含多个goroutine,对两个函数的调用则可能发生在同一时刻

2、main goroutine:当一个程序启动时,其主函数即在一个单独的goroutine中运行,我们叫他为main gorountine

3、go goroutine:新的goroutine会用go语句来创建,go+函数名,go语句会使其语句中的函数在一新创建的goroutine中运行,而go语句本身会迅速地完成

4、goroutine的退出:主函数返回时,所有的goroutine都会被直接打断,程序退出,除了从主函数退出或者终止程序之外,没有其他方法能够让一个goroutine来打断另一个的执行,但是可以通过另一种方式来实现这个目的,通过goroutine之间的通信来让一个goroutine请求其他的goroutine,并让请求的goroutine自行结束执行

Golang kafka简述和操作(sarama同步异步和消费组)

一、Kafka简述

1. 为什么需要用到消息队列

异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;

解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。

缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。

2.为什么选择kafka呢?

这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文

kafka的优点:

1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群

kafka的缺点:

1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高

3. Golang 操作kafka

3.1. kafka的环境

网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件

3.2. 第三方库

github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组

3.3. 消费者

单个消费者

funcconsumer(){varwg sync.WaitGroup  consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{      fmt.Println("Failed to start consumer: %s", err)return}  partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{      fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList {      pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{        fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return}      wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))        }deferpc.AsyncClose()        wg.Done()      }(pc)  }  wg.Wait()}funcmain(){  consumer()}

消费组

funcconsumerCluster(){  groupID :="group-1"config := cluster.NewConfig()  config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second  config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{      glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){      errors := c.Errors()      noti := c.Notifications()for{select{caseerr := -errors:            glog.Errorln(err)case-noti:        }      }  }(c)formsg :=rangec.Messages() {      fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))      c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}

3.4. 生产者

同步生产者

packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){  config := sarama.NewConfig()  config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{}  msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!")  client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{      fmt.Println("producer close err, ", err)return}deferclient.Close()  pid, offset, err := client.SendMessage(msg)iferr !=nil{      fmt.Println("send message failed, ", err)return}  fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}

异步生产者

funcasyncProducer(){  config := sarama.NewConfig()  config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second  p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){      errors := p.Errors()      success := p.Successes()for{select{caseerr := -errors:iferr !=nil{              glog.Errorln(err)            }case-success:        }      }  }(p)for{      v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000))      fmt.Fprintln(os.Stdout, v)      msg := sarama.ProducerMessage{        Topic: topics,        Value: sarama.ByteEncoder(v),      }      p.Input() - msg      time.Sleep(time.Second *1)  }}funcmain(){goasyncProducer()select{      }}

3.5. 结果展示-

同步生产打印:

分区ID:0,offset:90

消费打印:

Partition:0,Offset:90,key:,value:Hello World!

异步生产打印:

async:7272async:7616async:998

消费打印:

Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998


网页标题:go语言异步调用 go异步实现高并发请求
当前路径:http://mswzjz.cn/article/dojcsjo.html

其他资讯