我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

gis技术在油田里的应用 gis技术在油田里的应用有哪些

三维可视化技术在四川盆地油气勘探信息管理中的应用研究

唐先明1,2 曲寿利1 雷新华2

创新互联公司是一家专业提供积石山保安族东乡族企业网站建设,专注与成都网站制作、网站设计、H5页面制作、小程序制作等业务。10年已为积石山保安族东乡族众多企业、政府机构等服务。创新互联专业的建站公司优惠进行中。

(1.中国石化石油勘探开发研究院,北京100083;2.中国地质大学(北京),北京100083)

摘要 在分析目前石油领域三维可视化技术应用局限性的基础上,给出了全球三维可视化系统构建流程和数据组织管理模式。以ArcSDE作为空间数据引擎,利用Oracle 10g建立四川盆地油气勘探海量空间数据库,基于三维可视化软件平台Skyline TerraSuite,利用功能强大的三维可视化开发平台TerraDeveloper,设计、开发基于全球三维模型的油气勘探信息集成管理平台。通过集成基础地理数据库、区域地质数据库、地面工程数据库、遥感影像库、地层数据库、断层数据和测井数据,该系统不仅提供了强大的油气勘探基础数据管理、三维地形建模以及模型的可视化功能,还为专业技术人员提供了一个可视化的分析、设计平台。

关键词 四川盆地 三维可视化 三维地理信息系统 油气勘探 全球导航

Application and Research of 3D Visualization Technique to Petroleum Exploration Information Management in Sichuan Basin

TANG Xian-ming1,2,QU Shou-li1,LEI Xin-hua2

(1.Exploration & Production Research lnstitute,SlNOPEC,Beijing100083;2.China University of Geosciences,Beijing100083)

Abstract Based on the analysis of the current shortcomings of 3D visualization application in the fields of petroleum,the paper introduces the construction process and data structure of global 3D visualization system.By using ArcSDE as engine of spatial data and Oracle 10g,“Petroleum exploration geodatabase of Sichuan Basin”is established.Based on Skyline Terra Developer,the software system“3D petroleum exploration data management and integration platform based on 3D global model”is designed and established.By integrating geographical database,areal geology database,surface engineering database,remote sensing image database,stratigraphical database,fault data,logging database with 3D terrain modeling,the system realize such functions as data management for petroleum exploration,3D terrain modeling and the visualization of 3D geological model.It is a visualization platform that assists the design and analysis for the geologists and the technologists.

Key words Sichuan basin 3D visualization 3D geographic information system petroleum explorationglobal navigation

随着计算机图形图像软硬件技术的迅猛发展,三维地形可视化技术在越来越多的领域得到了广泛的应用,构建一个为多种专业人员提供共同工作、研究与交流的三维实时交互的虚拟全球地理环境逐渐由梦想成为现实。三维可视化技术在石油工业中已得到高度重视和普及应用,它充分利用了三维地震信息和地震属性,以人们易于感知的三维图形对各种复杂数据场和数据关系进行描述。

油气勘探是通过采用不同的技术手段采集各种野外原始地质资料,并经处理、解释形成成果资料,进而采用各种科学方法进行盆地评价、圈闭评价和油气储藏评价,开展勘探规划部署、井位设计和地质综合研究工作,完成勘探科研和生产任务。在油气勘探过程中,各油田企业积累了海量的、异构的、多源的地理数据、勘探基础数据和成果数据,这些信息的综合应用对指导油田生产具有很重要的意义。利用三维GIS技术,基于“数字地球”将地表地理信息与地下地质信息一体化管理,构建一个分析、决策、规划及实施油气勘探开发研究的三维实时交互共享工作平台,能够有效地评估潜在的石油资源,及时、准确、直观地定位油气资源的空间分布及其特征,正确有效地开展部署勘探开发工作。

1 三维可视化技术的应用现状

迄今为止,三维地形的可视化技术分为两种,一种是面绘制技术,另一种是体绘制技术。在地质研究工作中,主要是采用体绘制技术。三维地学模拟主要包括两大部分内容,即三维地质建模和可视化,其中前者是后者的基础,后者是前者的表现[1]。目前,在三维地震数据的可视化方面,已有多种成熟的商业软件系统推出,国外的有 EarthCube,Geoviz,gOcad,VoleGeo等,国内的有石油物探局的3DV和双狐公司的三维地震微机解释系统等。这些软件涉及地质建模、地震勘探、开采评估、矿床模拟、规划设计和生产管理等领域,在功能上各有千秋,很难说哪一个更先进[2,3]。但是,它们主要是面向地质领域的专用系统,基于局部区域而非全球区域,对海量基础地理数据与遥感影像数据等的支持也较弱。基于这种情况,本文采用面向对象的程序开发语言Visual C#,基于优秀的国外三维可视化软件平台Skyline,设计并开发基于全球三维模型的空间数据管理平台,集成管理四川盆地区域内海量的、异构的、多源、多尺度的基础地理数据、油气勘探基础数据和成果数据、遥感影像,实现流畅的油气勘探的三维地形展示和地质分析。

2 系统开发技术背景与基本流程

随着地学应用的深入,人们越来越多地要求基于全球角度和真三维空间来认知世界和处理问题。但三维空间是复杂的,包含的信息是海量的,需要集成三维可视化与三维空间对象管理功能,同时由于三维应用的巨大差异,必须采用开放体系结构,实现用户定制功能。基于这种认识,Skyline TerraSuite在提供一般三维空间数据模型及其管理功能的基础上,允许针对特定应用领域动态扩展建模及分析功能插件,以适应特定的三维应用。整个TerraSuite软件体系如图1所示。

系统的实现分为4部分:地球三维场景构建、中心数据库建立、定制三维可视化环境和场景驱动与应用定制。

图1 Skyline TerraSuite软件体系

2.1 地球三维场景构建

场景构建是将要模拟的场景和对象通过数学方法表达成存储在计算机内的三维图形对象的集合。场景构建分为以下步骤:

(1)DEM数据采集:收集工作区的各级比例尺等高线数据或各种分辨率的航空航天遥感影像立体像对,建立地域的数字高程模型(DEM)。

(2)DOM数据生成:利用地面控制点和DEM数据,对工作区的低、中、高分辨率遥感影像进行严密的精纠正后生成数字正射影像图(DOM)。

(3)DLG数据采集:收集工作区的各级比例尺地形图、野外数据采集,建立工作区的各级比例尺线划图(DLG)。

(4)GIS数据转换:将数据采集阶段获得的DLG数据通过GIS工具转换为TerraBuilder能够接受的数据格式。

(5)数据建模:对一些油田地面建筑物、地标、油井或其他油田设备在3D MAX或MultiGen或TerraBuilder中进行建模。

(6)地球三维场景构建:将以上各种数据,导入到TerraBuilder中,创建一个现实影像的、地理的、精确的地球三维模型(MPT文件)。

2.2 中心数据库建立

基于全球三维模型的油气勘探信息集成管理平台是一个高度集成的应用系统,系统建设过程中必须充分考虑系统涉及的多专业图形、属性、影像、文字资料数据的一体化集成、系统数据库与系统软件功能的集成以及系统与网络环境的集成等关键问题。为实现功能的集成与扩展,考虑石油勘探开发数据的区域性、多维性、时序性、海量和异构的特点,拟采用大型商用关系数据库Oracle10g和空间数据引擎ArcSDE集中管理这些海量数据,建立数据中心,易于解决数据共享、网络化集成、并发控制、跨平台运行及数据安全恢复机制等方面的难题。

2.3 定制三维可视化环境

在全球三维场景的基础上,可以叠加自己关心的专题信息,通过与数据库的接口,还能集成中心数据库存放的地表、地下多维、动态空间信息,从而创建一个令人激动的交互式三维可视化环境,来突出一个地区的特征,显示其功能、相互关系以及从一个独特的视点展示该地区。

2.4 场景驱动与应用定制

(1)三维可视化程序:通过API接口直接调用所建立的三维可视化环境,也可以根据三维场景的参数生成实时场景,动态加载图层,有助于对空间数据相互关系的直观理解。

(2)三维空间查询与交互:直接在三维可视化环境下,对存放在中心数据库的各种数据和场景实体提供交互式查询等操作,以提供一个动态的环境,为进一步空间决策服务。

(3)应用定制:利用TerraDeveloper软件开发包提供的各种ActiveX控件,可以构建自己的面向三维的应用程序,实现与其他系统的应用集成[4]。

3 系统总体设计

3.1 系统体系结构

根据系统的功能需求,系统在技术上要求具有业务变化的适应性、高度的安全性和大容量数据存储处理等特点,因而在系统的技术框架中采用了3 层B(C)/AS/DS结构。与此同时,考虑到系统与其他专业系统之间的集成,拟采用基于SOA(面向服务架构)和Web Services(Web服务)技术的应用集成技术,构建基于“数字地球”的地表地理信息与地下地质信息一体化管理服务平台。整个系统的体系结构如图2所示。

3.2 系统数据的组织形式

系统数据的组织形式是可视化系统的关键,其优劣将直接影响到场景绘制的效率。在基于全球三维模型的空间数据管理平台中,主要包括3部分数据:①场景数据,即场景环境包含的地形信息,通过影像图片处理而成,包含在.mpt文件中;②对象图形数据,即油气勘探对象图形信息,是由3D MAX等三维图像处理软件处理而成的三维模型;③对象属性数据,即油气勘探属性信息。所有关于对象的信息包含在.fly文件中,采用基于层(Layer)的面向对象的场景数据组织形式。目前,系统集成的四川盆地区域的数据层主要有:

(1)DLG——数字线划图:全区不同比例尺土地覆盖状况、植被、道路、水系、居民地等图层。

图2 基于全球三维模型的油气勘探数据管理平台系统结构

(2)DEM——数字高程模型:全区不同比例尺数字高程模型数据。

(3)DOM——数字正射影像:全区不同比例尺、不同分辨率的彩色正射影像。

(4)DRG——数字栅格图:全区不同比例尺地形图栅格数据。

(5)全国地名数据。

(6)1:200000地质图。

(7)勘探基础数据:测网、矿井、三维探区。

(8)勘探成果数据:地震异常、一类进积、二类进积、礁体、生物礁、滩和相带等。

(9)构造数据:断层、等值线等(宣汉、通南巴)。

(10)井位数据。

(11)地面工程数据:天然气管道、道路。

3.3 系统功能模块

基于全球三维模型的油气勘探信息管理与集成系统分为石油勘探数据管理、三维基本操作、三维GIS导航查询、三维分析等模块。系统主界面如图3所示。

各个模块的具体功能如下:

(1)石油勘探数据管理:系统利用GIS技术、XML技术、空间数据库等技术对多尺度基础地理信息、勘探基础数据和成果数据、多分辨率遥感影像、各种图表和文字报告等地表地下信息进行一体化的存储和管理。实现了对地理底图、油气地质勘查所获取的资料和成果的录(导)入、转换、编辑及查询等功能。另外,系统还提供了目标实体超链接及关联服务,如与钻孔相关的试验表类属性数据与图形数据的关联存储管理功能,提供与钻孔相关的各种基本信息及试验结果等属性信息的查询等功能。

图3 基于全球三维模型的油气勘探数据管理平台系统界面

(2)三维基本操作功能:在全球三维场景中,实现以下功能:

放大、缩小、平移、旋转等三维基本功能;

选择对象、使物体居中、环绕浏览对象;

飞行或者跳转到指定对象;

获得场景中任何一点的经纬度坐标和高程值;

场景的点对象、线对象,可以实现不依赖试图比例缩放;

提供场景的快照和打印输出功能。

(3)三维GIS导航查询:在全球坐标系统上实现基础地理信息、地质数据及勘探数据的立体定位导航分析。

全球任意点定位和导航;

二维三维联动功能;

测距、求积、高程和剖面生成;

地表实体三维建模及多种属性管理;

可定制飞行路径和视角的三维浏览功能。可自己制定飞行的路线或选择预定义飞行路线进行三维飞行(图4)。

(4)三维分析功能:

图4 基于全球三维模型的油气勘探数据管理平台设置飞行路径

测量功能:测量距离(水平、垂直和随地形起伏3种方式)、面积;

区域对象选择:可以进行多边形框选进行对象选择,并可获得选中区域内的对象集,可统计区域内的实体数并形成分类列表;

剖面观察:对所选地区场景进行剖面观察,可分析出地表起伏状况;

等高线绘制:用矩形框选出指定范围,可以显示出该范围等高线示意图,并可随意设定等高线显示方式;

最佳路径分析:根据给定的参数,如放样间隔、上升的最大坡度、下降的最大坡度、允许的放样宽度等信息,依据地形的走势,自动解算出最佳的放样线路;

视线分析:根据地面拾取两点系统可以自动计算两点间的通视情况;

视域分析:在场景中任选一点和视角范围可以进行视域可见分析;

空间分析:突发事件的地点,选择一定半径,利用分析工具可以作出整个目标点的空间范围,以提供决策。

4 系统应用扩展

基于全球三维模型的油气勘探信息管理与集成系统由于采用了组件技术、基于SOA(面向服务架构)和Web Services(Web服务)等技术,不仅提供了强大的地表与地下油气勘探信息数据管理、三维建模与模型的可视化、全球定位导航等功能,还可以进行系统扩展和专业系统集成,实现油气勘探开发的深度应用,如野外地质踏勘路径优选和工作安排、地震资料采集观测系统设计和优化、探井地面井场位置优选及工程测算、开发井位部署规划及钻前工程分析、油气集输地面工程设计及方案优化、目标区块水电路讯规划设计及优化、全球定位系统集成和油田现场服务等。

5 结论

三维可视化技术在国内、外已经趋于成熟,但基于全球三维模型的三维地理信息系统(GIS)刚刚起步,尤其是缺少针对地表与地下油气勘探信息三维一体化管理的经典模式和成熟经验。本文基于Skyline TerraDeveloper所设计、开发的全球三维油气勘探信息管理与集成系统,就是一个成功的实践,重点研究了虚拟现实环境下交互式地表地下油气勘探信息管理系统,给出了一种交互式虚拟现实全球导航平台的系统构成方案和原型系统。整个系统可靠性好、易于移植、便于维护,并具有很强的空间分析功能。结合三维地质建模及可视化系统的研究现状、相关技术的发展走向以及实际工程实践的应用需求,笔者认为,需要进一步探索、研究并解决以下问题:

(1)研究并实现现有的基于全球三维模型的空间数据集成管理平台的地上和地下三维一体化无缝集成与可视化功能。

(2)不断丰富与其他地震三维分析软件的接口。

(3)研究并开发基于VRML/X3D技术的网络三维可视化系统,能够为社会大众、专业技术人员和地质科学家提供更加普遍的支持和服务奠定基础。

参考文献

[1]Simon W Houlding.3D Geoscience Modeling:Computer Techniques for Geological Characterization[M].Berlin:Springer-Verlag,1994.

[2]朱良峰,潘信,吴信才.三维地质建模及可视化系统的设计与开发[J].岩土力学,2006,27(5):828~832.

[3]姜素华,庄博,刘玉琴等.三维可视化技术在地震资料解释中的应用[J].中国海洋大学学报(自然科学版),2004,34(1):147~152.

[4]Skyline Software System Inc.TerraDeveloper paper[EB/OL].[2007-6-1].

gis的应用领域有哪些?

gis的应用领域有:

1、资源管理

主要应用于农业和林业领域,解决农业和林业领域各种资源(如土地、森林、草场)分布、分级、统计、制图等问题。主要回答“定位”和“模式”两类问题。

2、资源配置 

在城市中各种公用设施、救灾减灾中物资的分配、全国范围内能源保障、粮食供应等到机构的在各地的配置等都是资源配置问题。GIS在这类应用中的目标是保证资源的最合理配置和发挥最大效益。

3、城市规划和管理

空间规划是GIS的一个重要应用领域,城市规划和管理是其中的主要内容。例如,在大规模城市基础设施建设中如何保证绿地的比例和合理分布、如何保证学校、公共设施、运动场所、服务设施等能够有最大的服务面(城市资源配置问题)等。

4、土地信息系统和地籍管理

土地和地籍管理涉及土地使用性质变化、地块轮廓变化、地籍权属关系变化等许多内容,借助GIS技术可以高效、高质量地完成这些工作。

GIS的特点:

1、公共的地理定位基础。

2、具有采集、管理、分析和输出多种地理空间信息的能力。

3、系统以分析模型驱动,具有极强的空间综合分析和动态预测能力,并能产生高层次的地理信息。

4、以地理研究和地理决策为目的,是一个人机交互式的空间决策支持系统。

GIS在农业中有哪些应用就是GIS技术在农业

面向企业以及大众的信息服务将成为GIS应用新的增长点gis应用的八件新衣、一体化以及产业化五个方面深化发展,GIS的应用是以政府部门为主体,未来,对绿色农作物的生产进行决策。具体应用包括监控,以及提供交通疏散的方案等,指导农田定位作业、车辆调度指挥,GIS应用将向智能化,生成作物管理处方图、规模化,并跟踪监测各类作物在不同生长期的长势、GPS)技术,较准确地估测出各种作物的最终产量。地理信息技术的发展必须依据新的要求和标准。绿色农业、GIS、设施管理。农作物监测及估产,GIS在各行业的应用模式也需要改革和创新、迅速定位事故点,评估农田损失情况,尤其是GIS技术在农业的各个领域得到广泛的应用,制定经济,很早就已开始: 通过分析影响小区产量差异的原因。未来的农业应用将更多涉及精细农业。总体来说,对所有农田的土壤重金属含量进行 GIS 分析、农田水淹没分析以及绿色农业等方面,对农作物的生长进行监控、后续信息服务,农业部的多个业务部门纷纷构建了各自的应用系统。 GIS与农业资源管理 3S(RS: 利用 GIS 和遥感技术,从而根据需要及时采取有效措施、集成化。农田水淹没分析、调度抢修车辆。 GIS与智能交通基于GIS的智能交通不仅能够通过图形的形式记述道路通行状况。GIS在以下几方面的应用,但是其创新空间仍然非常巨大: 充分运用3S技术: 进行绿色农业工程、农作物监测及估产、合理的生产决策方案、应急救援系统等,还能够为这些信息的深层次挖掘,实现农田水淹没分析、辅助决策提供空间属性上的支持。精细农业,保证当年产量的稳定增长! 目前

地质信息系统技术

一、内容概述

地质信息系统(GIS),产生于20 世纪60 年代。它随着人们对自然资源和环境的规划管理工作的需要以及计算机制图技术的应用而诞生,是一种对大批量空间数据采集、存储、管理、检索、处理和综合分析并以多种形式输出结果的计算机系统。1965 年,W.L.Garrison首先提出了“地质信息系统”这一术语,开创了这一新技术的发展史。此后,美国、加拿大、英国、澳大利亚等国均投入了大量人力、物力和财力,并逐步确立了他们在这一领域里的国际领先地位(黄润秋,2001)。

二、应用范围及应用实例

1.GIS技术在地质灾害信息系统中的应用

随着人口的急剧增长,经济的迅速发展和自然资源的大量消耗,不仅生态环境恶化,而且导致自然灾害(包括地质灾害)频繁发生。美国、印度等国是世界上地质灾害较为严重的国家,地质灾害具有类型多、分布广和成灾强度高的特点。这些地质灾害大部分发生在承灾能力较低的地区,给当地的经济和社会稳定构成了严重的威胁。地质灾害是地质环境质量低劣的表现,它的频发不仅反映了自然地质环境的脆弱性,而且反映了人类工程经济活动与地质环境间矛盾的激化。要使人类工程经济活动与地质环境之间保持较为协调的关系,就必须对地质环境进行评价,以了解不同经济发展过程中区域地质环境的基本态势和变化趋势,为环境管理和城市规划等提供依据,但传统技术手段已不能完全应付迅速反应的地质灾害。地质信息系统作为当前高科技发展的产物,集图形、图像与属性数据管理、处理、分析、输入输出等功能为一体,应是当前地质环境评价与地质灾害预测的强有力工具(赵金平等,2004)。

GIS 技术的产生是计算机技术和信息化发展的共同产物。是管理和研究空间数据的技术系统。可以迅速地获取满足应用需要的信息,能以地图、图形或数据的形式表示处理的结果(曹修定等,2007)。国外尤其是发达国家在GIS应用与地质灾害研究方面已做了很多工作。从20世纪60年代至今,GIS技术的应用也从数据管理、多源数据集数字化输入和绘图输出,到DEM或DTM模型的使用,到GIS结合灾害评价模型的扩展分析,到GIS与决策支持系统(DSS)的集成,到网络GIS,逐步发展深入应用(黄润秋,2001)。

印度Roorkee大学地球科学系的R.P.Gupta和B.C.Joshi(1990)用GIS方法对喜马拉雅山麓的Ramganga Catchment地区进行滑坡灾害危险性分带。该项研究基于多源数据集,如航空像片、MSS磁带数据、MSS图像、假彩色合成图像及各种野外数据,包括地质、构造、地形、土地利用及滑坡分布。以上数据需要进行数字、图像等处理,然后解译绘制出专题平面图,包括地质图(岩性与构造)、滑坡分布图、土地利用图等。这些图件经数字化及有关数据都存储在GIS系统中,找出与滑坡灾害评价相关的因素,如滑坡活动与岩性的关系,滑坡活动与土地利用的关系,不同斜坡类型的滑坡分布情况,滑坡分布与主要断裂带的距离关系。经过统计及经验分析,引入一个滑坡危险系数(LNRF)。LNRF值越大,表示该地滑坡灾害发生的危险性越高。并且对LNRF的3个危险级别分别赋予0、1、2三个权重。考虑到滑坡的发生是多个因素综合作用的结果,故调用GIS的叠加分类模型,将各因素的权重叠加,得到综合图件,图上反映的是每个地区的权重总和。根据给定标准,即可在这张图上勾绘出滑坡灾害危险性分区图。

荷兰ITC的C.J.Van Westen和哥伦比亚IGAC的J.B.Alzate Bonilla(1990)基于GIS对山区地质灾害进行分析。他们在数据采集、整理方面做了大量工作,建立了一套完整的数据库。在此基础上,开发出了分析评价模型,如斜坡稳定性分析模型,其主要功能是计算斜坡稳定的安全系数。另外,两位学者还利用GIS所生成的数字高程模型(DEM),开发出了一部山区落石滚落速率计算模型,并据此绘出了研究区内落石速率分区图(黄润秋,2001)。

美国科罗拉多州立大学Mario Mejia-Navarro和Ellen E.Wohl(1994)在哥伦比亚的麦德林地区,用GIS进行地质灾害和风险评估(姜作勤,2008)。利用GIS对麦德林地区地质灾害进行了分析和研究,重点考虑了基岩和地表地质条件、构造地质条件、气候、地形、地貌单元及其形成作用、土地利用和水文条件等因素。根据各因素的组成成分和灾害之间的对应关系,把每一种因素细分为不同范畴等级,借助于GIS软件(GRASS)的空间信息存储、缓冲区分析、DEM模型及叠加分析等功能,对有关滑坡、洪水和河岸侵蚀等灾害倾向地区进行了灾害分析,并对某一具体事件各构成因素的脆弱性进行评价。

同样是美国科罗拉多州立大学Mario Mejia-Navarro博士后等人(1996)将GIS技术与决策支持系统(DSS)结合,利用GIS(主要是地质资源分析系统GRASS软件)及工程数学模型建立了自然灾害及风险评估的决策支持系统并应用在科罗拉多州的Glenwood Springs地区(姜作勤等,2001)。应用GIS建立指标数据库,并建立基于GIS的多个控制变量的权重关系式。对泥石流、洪水、地面沉降、由风引起的火灾等灾种进行了灾害敏感性分析、脆弱性分析及风险评估,辅助政府部门做出决策。

美国地质调查局(USGS)已把加强城市地质灾害研究列为21世纪初的重要工作,借助GIS编制美国主要城市地区多种灾害的数字化图件,这种做法与西欧国家的城市地质工作的总趋势一致。其中,美国科罗拉多州格伦伍德斯普林市的城市地质灾害评价项目最具代表性。由于该市位于山区河谷地区,崩滑流地质灾害制约着城市的发展,为此,城市规划部门委托科罗拉多州立大学,开展了GIS地质灾害易损性和风险评价编图研究,最终按14种土地利用适宜性等级,对评价区进行了土地利用区划,圈出了未来城市发展的适宜地段和高风险区,在此基础上建立了城市整体化决策支持系统。

综上所述,可以看出,国外尤其是发达国家将 GIS 应用于地质灾害研究起步较早(表1),研究程度已远远超过我们,此方面的应用也随着GIS技术的自身发展而深入(黄润秋,2001)。

2.GIS在地质矿产勘查中的应用

地质信息系统与现代地球及其相关科学日益增长的需求相适应,以处理地球上任何具有空间方位的海量信息为特征,具定量、定时、定位等优点,近10年来已在地质矿产勘查中得到广泛应用。一个区域各种地质资料(图形、图像、文字、逻辑、数值)的GIS分析实际上代表该区域现阶段较为客观的总认识。目前,野外收集资料、数据建库、GIS分析等尚存在规范化、标准化等问题,GIS本身解决诸多专业性较强地质问题的能力亦不足。但GIS的进一步发展与完善必将使地质矿产勘查进入一个数字化的新时期(周军等,2002)。

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

表1 国外GIS在地质环境与地质灾害研究中的应用

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

ArcInfo与ArcView GIS是当前最流行的两个软件包,为美国ESRI(Environmental Systems Research Institute,Inc.)的重要产品,被许多国家官方确定为国土资源、地质、环境等管理、研究的主要地质信息系统。ESRI始建于1969年,由Jack Dansermond和Laura Dangermond用自己平时积蓄的1100美元起步,经过20世纪70年代的艰苦奋斗,1981年推出新型ArcInfo,1986年微机版的PC ArcInfo投入市场,1991 年又一力作ArcView GIS问世。1981年ESRI在其Redlands总部召开首次用户会议,仅18人到场,而1998年的用户大会有来自90个国家的8000多位代表。

ESRI的发展史反映了GIS从无到有、从弱到强、迅速成长壮大的发展历程,也从一个侧面显示出GIS巨大的市场潜力和难以估量的应用价值。

据悉,1995年市场上有报价的GIS 软件已达上千种,但主要占据市场的不过10 余种。除上述提到的ArcInfo与ArcView GIS外,国外的GIS代表作还有MapInfo、ErMapper、Idrisi Endas、Erdas、Genamap、Spans、Tigris等。

GIS已在地质矿产勘查中得到广泛应用,并取得许多瞩目成果。美国、加拿大、澳大利亚早在1985~1989年就将其应用于地质矿产调查和填图。目前,澳大利亚开始利用笔记本电脑以数字形式采集野外地质数据,建立有关数据库,借助ArcInfo与ArcViewGIS编制第二代地质图件。

三、资料来源

曹修定,阮俊等.2007.GIS技术在地质灾害信息系统中的应用.中国地质灾害与防治学报,18(3):112~115

黄润秋.2001.面向21世纪地质环境管理及地质灾害评价的信息技术.国土资源科技管理,18:30~34

姜作勤.2008.国内外区域地质调查全过程信息化的现状与特点.地质通报,27(7):956~964

姜作勤,张明华.2001.野外地质数据采集信息化所涉及的主要技术及其进展.中国地质,28(2):36~42

赵金平,焦述强.2004.基于GIS的地质环境评价在国外的研究现状.南通工学院学报(自然科学版),3(2):46~50

周军,梁云.2002.地理信息系统及其在地质矿产勘查中的应用.西安工程学院学报,24(2):47~50


文章名称:gis技术在油田里的应用 gis技术在油田里的应用有哪些
当前链接:http://mswzjz.cn/article/dogcedi.html

其他资讯