我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python求方差的函数 python编写计算方差的函数var

python编程统计列表中各数据的方差和标准差请编写主函数和计算方差的函数var。(不能引用库里)

def fangcha(): a=float(raw_input("请输入a:")) b=float(raw_input("请输入b:")) c=float(raw_input("请输入C:")) d=(a+b+c)/3.0 e=((a-d)**2+(b-d)**2+(c-d)**2)/3.0 print "平均数是:%f方差是:%f" %(d,e) fangcha() Python2.7可用

站在用户的角度思考问题,与客户深入沟通,找到荷塘网站设计与荷塘网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站建设、成都做网站、企业官网、英文网站、手机端网站、网站推广、国际域名空间、网站空间、企业邮箱。业务覆盖荷塘地区。

用python求数据表中数据的均值与方差

以下为代码:

numstr = input("请输入全部数据:用英文逗号(,),中文逗号(,),\

空格( ),制表符(tab键)或换行(请一次性复制过来)中的一种统一分隔数据:")

if "," in numstr:

numlist = numstr.split(",")

elif "," in numstr:

numlist = numstr.split(",")

elif "\t" in numstr:

numlist = numstr.split("\t")

elif "\n" in numstr:

numlist = numstr.split("\n")

elif " " in numstr:

numlist = numstr.split(" ")

else:

numlist = [numstr]

numlist = list(map(lambda x:x.strip(",").strip(",").\

             strip("\t").strip("\n").strip(" "), numlist))

for i in numlist.copy():

try:

  a = float(i)

except:

  numlist.remove(i)

  print("已过滤字符串:%s"%i)

#好了,上面很多只是方便用户而已(但还是有一些有用的),主要是下面

numlist = list(map(lambda x:float(x), numlist))#所有字符串转为浮点

print("最终数列:",numlist)#输出最终数列,进行核对

average = sum(numlist)/len(numlist)#用数列和除以出列长度得到平均数

variance = 0#方差,先记为0

for i in numlist:#遍历列表

variance += (i - average) ** 2#反正就是公式对吧,先加进去

variance /= len(numlist)#还是公式,那一长串还得除以一个数列长度

print("均值:%.2f\n方差:%.2f"%(average, variance))#分两行输出

以下为输出效果:

请输入全部数据:用英文逗号(,),中文逗号(,),空格( ),制表符(tab键)或换行(请一次性复制过来)中的一种统一分隔数据:38,22,99,10,99,7, 25,,40

已过滤字符串:

最终数列: [38.0, 22.0, 99.0, 10.0, 99.0, 7.0, 25.0, 40.0]

均值:42.50

方差:1181.75

以下为解析:

平均值的思路就是总和除以列表长度,方差的思路就是把所有的(x-均值)²加起来,最后再除以一个长度即可。

本程序的优点:输入时逗号后出现空格与不小心多打逗号等情况都不会出问题,可以接受小数,可以先输出最终数列以供核对。

2 如何用Python进行数据计算

numpy计算平均数 标准差 相关系数等基本知识

NumPy 是python 语言的一个第三方库,其支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。

#导入Numpy库,并命名为np

import numpy as np

#创建一维数组

a = np.array([1, 2, 3])

# NumPy可以很方便地创建连续数组,比如我使用arange或linspace函数进行创建:

b = np.arange(1,5,1) // 返回一个有终点和起点、固定步长的排列,如起点是1,终点是4,步长为1,即【1,2,3,4】,

c = np.linspace(1,9,5) 返回一个有终点和起点、元素个数的的排列,如起点是1,终点是9,元素个数为5,即【1,3,5,7,9】

#通过NumPy可以自由地创建等差数组,同时也可以进行加、减、乘、除、求n次方和取余数。

求和:np.sum(a)

求取平均值:np.mean(a)

求取中位数:np.median(a)

求取加权平均数:np.average(a)

求取方差:var() np.var(a)

求取最小值:np.amin(a)

求取最大值:np.amax(a)

将两个数相加:np.add(x1, x2)

将两个数相减:np.subtract(x1, x2)

将两个数相乘:np.multiply(x1, x2)

将两个数相除:np.divide(x1, x2)

立方:np.power(x1, x2)

除余:np.remainder(x1, x2)

相关系数计算:np.corrcoef(a1, a2) (a1、a2都是矩阵)

在Python库中的static模块用什么函数可以求数据的样本方差

自定义函数求解即可,参考代码如下:

def f_sigma(x):

# 通过Python定义一个计算变量波动率的函数

# x:代表变量的样本值,可以用列表的数据结构输入

n = len(x)

u_mean = sum(x)/n #计算变量样本值的均值

z = [] #生成一个空列表

for t in range(n):

z.append((x[t]-u_mean)**2)

return (sum(z)/(n-1))**0.5 # n-1 自由度

a = f_sigma(x = [1,2,3])

print('样本方差:', a)


文章名称:python求方差的函数 python编写计算方差的函数var
URL分享:http://mswzjz.cn/article/doeoppi.html

其他资讯