我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

mysql索引怎么工作的 mysql 索引是怎么实现

Mysql的索引的工作原理是怎样的

索引是一个单独的、物理的数据库结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识这些值的数据页的逻辑指针清单。

成都创新互联公司长期为千余家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为陈仓企业提供专业的成都做网站、网站制作,陈仓网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。

索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容。

MySQL索引怎么工作的

在满足语句需求的情况下,尽量少的访问资源是数据库设计的重要原则,这和执行的 SQL 有直接的关系,索引问题又是 SQL 问题中出现频率最高的,常见的索引问题包括:无索引(失效)、隐式转换。1. SQL 执行流程看一个问题,在下面这个表 T 中,如果我要执行 需要执行几次树的搜索操作,会扫描多少行?

这分别是 ID 字段索引树、k 字段索引树。

这条 SQL 语句的执行流程:

1. 在 k 索引树上找到 k=3,获得 ID=3002. 回表到 ID 索引树查找 ID=300 的记录,对应 R33. 在 k 索引树找到下一个值 k=5,ID=5004. 再回到 ID 索引树找到对应 ID=500 的 R4

5. 在 k 索引树去下一个值 k=6,不符合条件,循环结束

这个过程读取了 k 索引树的三条记录,回表了两次。因为查询结果所需要的数据只在主键索引上有,所以必须得回表。所以,我们该如何通过优化索引,来避免回表呢?2. 常见索引优化2.1 覆盖索引覆盖索引,换言之就是索引要覆盖我们的查询请求,无需回表。

如果执行的语句是 ,这样的话因为 ID 的值在 k 索引树上,就不需要回表了。

覆盖索引可以减少树的搜索次数,显著提升查询性能,是常用的性能优化手段。

但是,维护索引是有代价的,所以在建立冗余索引来支持覆盖索引时要权衡利弊。

2.2 最左前缀原则

B+ 树的数据项是复合的数据结构,比如 的时候,B+ 树是按照从左到右的顺序来建立搜索树的,当 这样的数据来检索的时候,B+ 树会优先比较 name 来确定下一步的检索方向,如果 name 相同再依次比较 sex 和 age,最后得到检索的数据。

可以清楚的看到,A1 使用 tl 索引,A2 进行了全表扫描,虽然 A2 的两个条件都在 tl 索引中出现,但是没有使用到 name 列,不符合最左前缀原则,无法使用索引。所以在建立联合索引的时候,如何安排索引内的字段排序是关键。评估标准是索引的复用能力,因为支持最左前缀,所以当建立(a,b)这个联合索引之后,就不需要给 a 单独建立索引。原则上,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。上面这个例子中,如果查询条件里只有 b,就是没法利用(a,b)这个联合索引的,这时候就不得不维护另一个索引,也就是说要同时维护(a,b)、(b)两个索引。这样的话,就需要考虑空间占用了,比如,name 和 age 的联合索引,name 字段比 age 字段占用空间大,所以创建(name,age)联合索引和(age)索引占用空间是要小于(age,name)、(name)索引的。

2.3 索引下推

以人员表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是26岁的所有男性”。那么,SQL 语句是这么写的

通过最左前缀索引规则,会找到 ID1,然后需要判断其他条件是否满足在 MySQL 5.6 之前,只能从 ID1 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown),可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。这样,减少了回表次数和之后再次过滤的工作量,明显提高检索速度。

2.4 隐式类型转化

隐式类型转化主要原因是,表结构中指定的数据类型与传入的数据类型不同,导致索引无法使用。所以有两种方案:

修改表结构,修改字段数据类型。

修改应用,将应用中传入的字符类型改为与表结构相同类型。

3. 为什么会选错索引3.1 优化器选择索引是优化器的工作,其目的是找到一个最优的执行方案,用最小的代价去执行语句。在数据库中,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

3.2 扫描行数

MySQL 在真正开始执行语句之前,并不能精确的知道满足这个条件的记录有多少条,只能通过索引的区分度来判断。显然,一个索引上不同的值越多,索引的区分度就越好,而一个索引上不同值的个数我们称为“基数”,也就是说,这个基数越大,索引的区分度越好。

MySQL 使用采样统计方法来估算基数:采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:

on 表示统计信息会持久化存储。默认 N = 20,M = 10。

off 表示统计信息只存储在内存中。默认 N = 8,M = 16。

由于是采样统计,所以不管 N 是 20 还是 8,这个基数都很容易不准确。所以,冤有头债有主,MySQL 选错索引,还得归咎到没能准确地判断出扫描行数。

可以用 来重新统计索引信息,进行修正。

3.3 索引选择异常和处理1. 采用 force index 强行选择一个索引。2. 可以考虑修改语句,引导 MySQL 使用我们期望的索引。3. 有些场景下,可以新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。

mysql索引是如何实现的

索引的创建很简单,可以网上查下相关信息,在这里只是说下索引需要注意的地方,索引分为很多不同的类型,一般咱们说的是B_Tree索引,这里就只说B_Tree,如果是哈希索引,可以网上找相关资料。

.B_Tree适用于:

1.全值匹配

全值匹配是指和索引中的所有列进行匹配。

2.匹配最左前缀

匹配左左前缀即只使用索引的第一列

3.匹配列前缀

匹配某一列开头部分(指的第一列)。

4.匹配范围值

5.精确匹配某一列并范围匹配另一列

6.只访问索引的查询

只需访问索引,无需访问数据行。

.B_Tree限制

1.如果不是按照索引的最左列开始查找,则无法使用索引。

2.不能跳过索引中的列。

3.如果查询中有某个列的范围查询,则其右边左右列无法使用索引优化查找。

Mysql InnoDB索引原理

理解Mysql索引的原理和数据结构有助于我们更好的使用索引以及进行SQL优化,索引是在存储引擎层面实现的,所以不同的引擎实现的索引也有一定的区别,但是在生产环境中,我们最常用的就是InnoDB引擎和B树索引,OK,那本文要讨论的重点也同样是 InnoDB引擎下的B树索引 。

我们建立一个表来进行测试,表的DDL如下所示,我们要关注的是表t_book上的主键索引id和name author publish_date三列组成的索引test_index。

Mysql中的B树索引是使用B+树实现的,关于B+树的数据结构个人认为美团点评技术博客中Mysql索引原理及慢查询优化一文中介绍的非常详实,B+树的数据结构如下图所示。

图中浅蓝色块即磁盘块,根节点磁盘块中存储17和35两个数据,其中指针P1指向小于17的数据,指针P2指向大于17小于35的数据,指针P3指向大于35的数据。显然通过B+树索引查询数据与B+树的高度有关,如上图的B+树索引查找一个叶子节点的数据只需要三次磁盘IO,对于Mysql来说三层的B+树可以索引上百万的数据,这对于查询效率的提升是巨大的。

总结起来Mysql中B树索引有以下关键特点:

Mysql中的B树索引有两种数据存储形式,一种为聚簇索引,一种为二级索引。

InnoDB一般会使用表的主键来作为聚簇索引,如果一个表没有主键(不建议这么玩)InnoDB会选用一个唯一非空索引来代替,如果没有这样的索引,InnoDB会隐式建立一个聚簇索引。聚簇的含义即是数据行和相邻的键值紧凑的存储在一起,占据一块连续的磁盘空间,因此通过聚簇索引访问数据可以有效减少随机IO,通常使用聚簇索引查找比非聚簇索引查找速度更快。以我们建立的表t_book为例,聚簇索引即为自增主键id,其B树索引数据结构可以用下图来表示。

聚簇索引有以下关键特点:

InnoDB的B树索引中除了聚簇索引,就都是二级索引了,二级索引的含义是索引的叶子节点除了存储了索引值,还存储了主键id,在使用二级索引进行查询时,查找到二级索引B树上的叶子节点后还需要去聚簇索引上去查询真实数据,但是这里有一种特殊情况,即查询所需的所有字段在二级索引中都可以获取,此时就不需要再去回表查数据了,这种情况就是索引覆盖(EXPLAIN中EXTRA列中会出现USING INDEX,本文只关注索引结构,不详细讨论索引覆盖等技术的使用,如果深入理解索引的数据结构,索引覆盖等技术也没有那么神秘)。

在我们的测试表t_book中,test_index即为二级索引,由于我们把除了主键id所有的列都作为一个联合索引,所以在这个表上的查询都可以使用索引覆盖技术,但是具体生产环境中也不建议总是采用这种做法,索引列的增加也会增大插入更新数据时的索引更新成本,具体的优化要视具体情况决策。t_book上的二级索引test_index的索引结构由下图表示。

通过以上结构,我们可以推断出二级索引的以下关键特点:

索引覆盖:

最左前缀匹配:

二级索引可以说是我们在Mysql中最常用的索引,通过理解二级索引的索引结构可以更容易理解二级索引的特性和使用。

最后聊点轻松的索引结构,哈希索引就是通过哈希表实现的索引,即通过被索引的列计算出哈希值,并指向被索引的记录。

哈希索引有如下特性:

Mysql索引原理及慢查询优化

高性能Mysql 第三版


新闻名称:mysql索引怎么工作的 mysql 索引是怎么实现
分享地址:http://mswzjz.cn/article/doehpsh.html

其他资讯