我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python数据分组函数 python数据分组统计

python--pandas分组聚合

groupby 方法是pandas中的分组方法,对数据框采用 groupby 方法后,返回的是 DataFrameGroupBy 对象,一般分组操作后会进行聚合操作。

创新互联服务项目包括织金网站建设、织金网站制作、织金网页制作以及织金网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,织金网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到织金省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

对数据框按 A 列进行分组,产生分组数据框。分组数据框是可迭代对象,可以进行循环遍历,可以看出在循环中,每个元素的类型是元组,

元组的第一个元素是分组值,第二个元素是对应的分组数据框。

可以对分组后的数据框直接使用聚合方法 agg ,对分组数据框的每一列计算统计函数值。

可以根据数据框外的序列数据对数据框进行分组,需要注意 序列长度需要与数据框行数相同 。

可以根据数据框的多列对数据框进行分组。

根据 A , B 列进行分组,然后求和。

可以根据索引对数据框进行分组,需要设置 level 参数。

数据框只有一层索引,设置参数 level=0 。

当数据框索引有多层时,也可以根据需求设置 level 参数,完成分组聚合。

设置 level 参数,如需要根据第一层索引,即 id1 进行分组,可以设置 level=0 或 level='id1' 完成分组聚合。

分组后一般会进行聚合操作,用 agg 方法进行聚合。

对分组后数据框使用单个函数进行聚合,单个聚合函数会对每列进行计算,然后合并返回。聚合函数以字符串的形式传入。

可以对分组后的数据指定列进行分组聚合。需要注意 子列需要用[]包裹 。

聚合函数也可以传入自定义的匿名函数。

聚合函数可以是多个函数。聚合时,多个聚合函数会对每列进行计算,然后合并返回。聚合函数以列表的形式传入。

聚合返回后的数据列名有两层索引,第一层是聚合的列名,第二层是使用的聚合函数名。如果需要对返回的聚合函数名重命名,

需要在传参时,传入元组,第一个元素为聚合函数名,第二个元素为聚合函数。

同样,也可以传入匿名函数。

如果需要对不同的列进行不同的聚合计算,则需要传入字典的形式。

可以重命名聚合后的列名,注意 只能对一列传入一个聚合函数时有效 。

python可以做数据分析,好处是什么呢?怎么学习?

链接:

提取码:7234

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

Python气象数据处理进阶之Xarray(5):数据整合(分组,合并...)

这部分同pandas的gorupby函数基本相同,实现对数据的分组归类等等。

split·将数据分为多个独立的组。

apply·对各个组进行操作。

combine·将各个组合并为一个数据对象。

创建一个dataset

我对官网的例子加以修改以便更好的理解。

解释下数据结构,创建了一个二维数据u(lat, lon),坐标数据为latitude 和country ,强调一下这里创建的是dataset,而不是dataArray,分不清的可以再看看本系列的第一篇文章。坐标数据不等于u的坐标。创建coords部分都指明了latitude 和 country 都是针对lat的扩展。

我们可以这样理解,对于纬度的分类,我们可以按纬度的大小分,也就是"latitude": [10, 20, 30, 40] ; 我们也可以对纬度所在的国家分,"country": ("x", list("abba") ,那比如我们想求某个国家的数据的平均时就十分方便。

下边我们进行分组:

说明第0和第4个数是国家a的,第2和第3是国家b的。

.groups换成.mean() 则就是对分组求平均,以此类推。

必须添加一个list才可以将其分类结果打印出来。直接打印DatasetGroupBy object是不能输出结果的。

那么针对经纬度的坐标的分组怎么实现呢,比如说选出区间在多少到多少之间的?

.groupby_bins() 函数可以解决这一问题。

还是这个数据,"latitude": [10, 20, 30, 40]

那我们想以25为界,分为两组,0-25,25-50

在进行了分组后,要对各个分组进行计算。

我们先从dataset 中取出 u 这个dataarray

比如是实现前边提到的按国家进行数据平均,或者标准化

也可以通过map()函数使用一些自定义的函数,比如说标准化,

这个用法是官方提供的,但是我的Xarray版本过低,还不支持这种用法(Xarray会定期更新,以至于可能我介绍过的一些方法有了更简便的操作,大家可以在评论区留言)。

强调一句,Xarray官方的更新是比较快的,很可能我写在这里的函数官方又给出了更新的版本,但是我没办法做到时刻与官方最新同步,所以如果遇到问题,最好的解决办法还是去查阅官方文档的对应部分。

Python 数据处理(三十九)—— groupby(过滤)

filter 方法可以返回原始对象的子集.

例如,我们想提取分组内的和大于 3 的所有分组的元素

filter 的参数必须是一个函数,函数参数是每个分组,并且返回 True 或 False

例如,提取元素个数大于 2 的分组

另外,我们也可以过滤掉不满足条件的组,而是返回一个类似索引对象。在这个对象中,没有通过的分组的元素被 NaN 填充

对于具有多列的 DataFrames ,过滤器应明确指定一列作为过滤条件

在进行聚合或转换时,你可能想对每个分组调用一个实例方法,例如

但是,如果需要传递额外的参数时,它会变得很冗长。我们可以直接使用分派到组对象上的方法

实际上这生成了一个函数包装器,在调用时,它接受所有传递的参数,并在每个分组上进行调用。

然后,这个结果可以和 agg 和 transform 结合在一起使用

在上面的例子中,我们按照年份分组,然后对每个分组中使用 fillna 补缺失值

nlargest 和 nsmallest 可以在 Series 类型的 groupby 上使用

对分组数据的某些操作可能并不适合聚合或转换。或者说,你可能只是想让 GroupBy 来推断如何合并结果

我们可以使用 apply 函数,例如

改变返回结果的维度

在 Series 上使用 apply 类似

对于之前的示例数据

假设,我们想按 A 分组并计算组内的标准差,但是 B 列的数据我们并不关心。

如果我们的函数不能应用于某些列,则会隐式的删除这些列,所以

直接计算标准差并不会报错

可以使用分类变量进行分组,分组的顺序会按照分类变量的顺序

可以使用 pd.Grouper 控制分组,对于如下数据

可以按照一定的频率对特定列进行分组,就像重抽样一样

可以分别对列或索引进行分组

类似于 Series 和 DataFrame ,可以使用 head 和 tail 获取分组前后几行

在 Series 或 DataFrame 中可以使用 nth() 来获取第 n 个元素,也可以用于获取每个分组的某一行

如果你要选择非空项,可以使用关键字参数 dropna ,如果是 DataFrame ,需要指定为 any 或 all (类似于 DataFrame.dropna(how='any|all') )

与其他方法一样,使用 as_index=False 分组名将不会作为索引

你也可以传入一个整数列表,一次性选取多行

使用 cumcount 方法,可以查看每行在分组中出现的顺序

可以使用 ngroup() 查看分组的顺序,该顺序与 cumcount 的顺序相反。

注意 :该顺序与迭代时的分组顺序一样,并不是第一次观测到的顺序

Python分组

前言分组原理

核心:

1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组。

2.默认axis=0按行分组,可指定axis=1对列分组。

对数据进行分组操作的过程可以概括为:split-apply-combine三步:

1.按照键值(key)或者分组变量将数据分组。

2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数。

3.将函数计算后的结果聚合。

1 分组模式及其对象

1.1 分组的一般模式

三个要素:分组依据、数据来源、操作及其返回结果

df.groupby(分组依据)[数据来源].使用操作

1.2 分组依据的本质

1.3Groupby 对象

通过 ngroups 属性,可以访问分为了多少组:

通过 groups 属性,可以返回从 组名映射到 组索引列表的字典:

当 size 作为 DataFrame 的属性时,返回的是表长乘以表宽的大小,但在 groupby 对象上表示统计每个组的 元素个数:

通过 get_group 方法可以直接获取所在组对应的行,此时必须知道组的具体名字:

1.4 分组的三大操作

分组的三大操作:聚合、变换和过滤

2.聚合函数

2.1内置聚合函数

包括如下函数: max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod

2.2agg 方法

【a】使用多个函数

当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的。

【b】对特定的列使用特定的聚合函数

对于方法和列的特殊对应,可以通过构造字典传入 agg 中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。

【c】使用自定义函数

在 agg 中可以使用具体的自定义函数,需要注意传入函数的参数是之前数据源中的列,逐列进行计算

【d】聚合结果重命名 如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数

3 变换和过滤

3.1 变换函数与 transform 方法

变 换 函 数 的 返 回 值 为 同 长 度 的 序 列, 最 常 用 的 内 置 变 换 函 数 是 累 计 函 数:cum- count/cumsum/cumprod/cummax/cummin ,它们的使用方式和聚合函数类似,只不过完成的是组内 累计操作。

3.2 组索引与过滤

过滤在分组中是对于组的过滤,而索引是对于行的过滤

组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回 True 则会被保留,False 则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为 DataFrame 返回。

在 groupby 对象中,定义了 filter 方法进行组的筛选,其中自定义函数的输入参数为数据源构成的 DataFrame 本身,在之前例子中定义的 groupby 对象中,传入的就是 df[['Height', 'Weight']] ,因此所有表方法和属性 都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可。

4 跨列分组

4.1 apply 的引入

4.2 apply 的使用

在设计上,apply 的自定义函数传入参数与 filter 完全一致,只不过后者只允许返回布尔值

【a】标量情况:结果得到的是 Series ,索引与 agg 的结果一致

【b】Series 情况:得到的是 DataFrame ,行索引与标量情况一致,列索引为 Series 的索引

【c】DataFrame 情况:得到的是 DataFrame ,行索引最内层在每个组原先 agg 的结果索引上,再加一层返 回的 DataFrame 行索引,同时分组结果 DataFrame 的列索引和返回的 DataFrame 列索引一致


网站题目:python数据分组函数 python数据分组统计
标题网址:http://mswzjz.cn/article/dodoidg.html

其他资讯