贝锐智能攀枝花建站部专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python写哈希函数 C语言哈希函数

Python如何哈希字符串

Python中字符串是可哈希的,即可以作为字典的键或者HashTable的键使用。

创新互联公司的客户来自各行各业,为了共同目标,我们在工作上密切配合,从创业型小企业到企事业单位,感谢他们对我们的要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。专业领域包括成都网站建设、网站建设、电商网站开发、微信营销、系统平台开发。

您可以这样子使用Python内置函数hash(散列函数):

您也可以将字符串转为一个集合:

总之,Python里面有很多内置的hash功能性数据结构和函数。

Python数据结构-哈希表(Hash Table)

哈希表(Hash Table) :通过键 key 和一个映射函数 Hash(key) 计算出对应的值 value,把关键码值映射到表中一个位置来访问记录,以加快查找的速度。

哈希函数(Hash Function) :将哈希表中元素的关键键值映射为元素存储位置的函数。

哈希冲突(Hash Collision) :不同的关键字通过同一个哈希函数可能得到同一哈希地址。

哈希表的两个核心问题是: 「哈希函数的构建」 和 「哈希冲突的解决方法」 。

常用的哈希函数方法有:直接定址法、除留余数法、平方取中法、基数转换法、数字分析法、折叠法、随机数法、乘积法、点积法等。

常用的哈希冲突的解决方法有两种:开放地址法和链地址法。

给你一个整数数组 nums 和两个整数 k 和 t 。请你判断是否存在 两个不同下标 i 和 j,使得 abs(nums[i] - nums[j]) = t ,同时又满足 abs(i - j) = k 。

如果存在则返回 true,不存在返回 false。

给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。

给你两个整数数组 nums1 和 nums2 ,请你以数组形式返回两数组的交集。返回结果中每个元素出现的次数,应与元素在两个数组中都出现的次数一致(如果出现次数不一致,则考虑取较小值)。可以不考虑输出结果的顺序。

请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。

数字 1-9 在每一行只能出现一次。

数字 1-9 在每一列只能出现一次。

数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

力扣217

力扣389

力扣496

内容参考:

python之哈希算法

哈希(Hash)算法:`hash(object)`

哈希算法将一个不定长的输入,通过散列函数变换成一个定长的输出,即散列值。是一种信息摘要算法。对象的hash值比原对象拥有更低的内存复杂度。

它不同于加密。哈希(hash)是将目标文本转换成具有相同长度的,不可逆的杂凑字符串,而加密则是将文本转换为具有相同长度的,可逆的密文。

哈希(hash)算法是不可逆的,只能由输入产生输出,不能由输出产生输入。而加密则是可逆的。即可以从输入产生输出,也可以反过来从输出推出输入。

对于hash算法,不同的数据应该生成不同的哈希值。如果两个不同的数据经过Hash函数计算得到的Hash值一样。就称为哈希碰撞(collision)。哈希碰撞无法被完全避免。只能降低发生概率。

好的hash函数会导致最少的hash碰撞。

*

可哈希性(hashable):

可哈希的数据类型为不可变的数据结构(如字符串srt,元组tuple,对象集objects等)。这种数据被称为可哈希性。

不可哈希性:

不可哈希的数据类型,为可变的数据结构(如字典dict,列表list和集合set等)。

如果对可变的对象进行哈希处理,则每次对象更新时,都需要更新哈希表。这样我们则需要将对象移至不同的数据集,这种操作会使花费过大。

因此设定不能对可变的对象进行hash处理。

**

**

Python3.x添加了hash算法的随机性,以提高安全性,因此对于每个新的python调用,同样的数据源生成的结果都将不同。

哈希方法有(MD5, SHA1, SHA256与SHA512等)。常用的有SH256与SHA512。MD5与SHA1不再常用。

- MDH5 (不常用)

- SHA1 (不常用)

- SHA256 (常用)

- SHA512 (常用)

一种局部敏感的hash算法,它产生的签名在一定程度上可以表征原内容的相似度。

可以被用来比较文本的相似度。

安装simhash:

Pip3 install simhash

感知哈希算法(perceptual Hash Algorithm)。用于检测图像和视频的差异。

安装Imagehash:

pip3 install Imagehash

比较下面两张图片的Imagehash值

可以看到两张图片的hash值非常相似。相似的图片可以生成相似的哈希值是Imagehash的特点。


网站名称:python写哈希函数 C语言哈希函数
文章网址:http://mswzjz.cn/article/dodhpjp.html

其他资讯