我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

c语言函数例题 c语言函数题目

c语言编写16进制转换十进制函数算法

例题:请编制函数ReadDat()实现从文件IN.DAT中读取100个十六进制整数到数组xx中;请编制函数H16To10().将xx中的十六进制数转换成十进制数并把已转换的十进制数仍存放在字符串数组xx,最后调用函数WriteDat()把结果输出到OUT.DAT文件中。

我们提供的服务有:成都网站设计、做网站、微信公众号开发、网站优化、网站认证、张北ssl等。为成百上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的张北网站制作公司

原始数据文件存放的格式是:每行存放10个数,并用逗号隔开。(每个数均大于0且小于等于2000)

部分源程序已给出。

请勿改动主函数main()和输出数据函数writeDat()的内容。

#include

stdio.h

#include

stdlib.h

#include

ctype.h

#include

string.h

#define

MAX

100

char

xx[MAX][20]

void

WriteDat(void)

int

ReadDat(viod)

{

FILE

*fp;

if((fp=fopen(\

IN.DAT\

,\

r)==NULL)

return

1;

fclose(fp);

return

0;

}

void

H16To10(void)

{

}

void

main()

{

int

i;

for(i=0;iMAX;i++)memset(xx[i],0,20);

if(ReadDat()){

printf(\

数据文件IN.DAT不能打开!\\007\\n\

);

return;

}

H16To10()

WriteDat()

}

void

WriteDat(void)

{

FILE

*fp;

int

i;

fp=fopen(\

OUT.DAT\

,\

w\

);

for(i=0;iMAX;i++)fprintf(fp,\

%s\\n\

,xx[i]);

fclose(fp);

}

--------------------------------------------------------------------------------

/*

注:该题与题39相似,只是改变函数itoa()的格式。*/

int

ReadDat(void)

{

FILE

*fp

;

int

i,data;

char

yy[20];

if((fp=fopen("in.dat","r"))==NULL)

return

1;

for(i=0;i100;i++)

{fscanf(fp,"%x,",data);itoa(data,yy,16);strcpy(xx[i],yy);}

fclose(fp)

;

return

;

}

void

H16to10(void)

{

int

i,data;

char

yy[20];

for(i=0;i100;i++)

{data=strtol(xx[i],NULL,16);itoa(data,yy,10);strcpy(xx[i],yy);}

}

请高手帮我做一套C语言的题4

自变量x和因变量y有如下关系:

y=kx+b (k为任意不为零实数,b为任意实数)

则此时称y是x的一次函数。

特别的,当b=0时,y是x的正比例函数。

即:y=kx (k为任意不为零实数)

定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反,

一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)

形。取。象。交。减

一次函数的图像及性质

1.作法与图形:通过如下3个步骤

(1)列表[一般取两个点,根据两点确定一条直线];

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.函数不是数,它是指某一变量过程中两个变量之间的关系。

4.k,b与函数图像所在象限:

y=kx时

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b时:

当 k0,b0, 这时此函数的图象经过一,二,三象限。

当 k0,b0, 这时此函数的图象经过一,三,四象限。

当 k0,b0, 这时此函数的图象经过二,三,四象限。

当 k0,b0, 这时此函数的图象经过一,二,四象限。

当b>0时,直线必通过一、二象限;

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

确定一次函数的表达式

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

一次函数在生活中的应用

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

常用公式(不全,希望有人补充)

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

5.求两一次函数式图像交点坐标:解两函数式

两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标

6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]

7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)

k b

+ + 在一、二、三象限

+ - 在一、三、四象限

- + 在一、二、四象限

- - 在二、三、四象限

8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2

9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1

应用

一次函数y=kx+b的性质是:(1)当k0时,y随x的增大而增大;(2)当k0时,y随x的增大而减小。利用一次函数的性质可解决下列问题。

一、确定字母系数的取值范围

例1. 已知正比例函数 ,则当m=______________时,y随x的增大而减小。

解:根据正比例函数的定义和性质,得 且m0,即 且 ,所以 。

二、比较x值或y值的大小

例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1y2,则x1与x2的大小关系是( )

A. x1x2 B. x1x2 C. x1=x2 D.无法确定

解:根据题意,知k=30,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2。故选A。

三、判断函数图象的位置

例3. 一次函数y=kx+b满足kb0,且y随x的增大而减小,则此函数的图象不经过( )

A. 第一象限 B. 第二象限

C. 第三象限 D. 第四象限

解:由kb0,知k、b同号。因为y随x的增大而减小,所以k0。所以b0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A . 典型例题:

例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.

分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.

解:由题意设所求函数为y=kx+12

则13.5=3k+12,得k=0.5

∴所求函数解析式为y=0.5x+12

由23=0.5x+12得:x=22

∴自变量x的取值范围是0≤x≤22

【考点指要】

一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.

例2.如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。

解:(1)若k>0,则可以列方程组 -2k+b=-11

6k+b=9

解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6

(2)若k<0,则可以列方程组 -2k+b=9

6k+b=-11

解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4

【考点指要】

此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。

一次函数解析式的几种类型

①ax+by+c=0[一般式]

②y=kx+b[斜截式]

(k为直线斜率,b为直线纵截距,正比例函数b=0)

③y-y1=k(x-x1)[点斜式]

(k为直线斜率,(x1,y1)为该直线所过的一个点)

④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]

((x1,y1)与(x2,y2)为直线上的两点)

⑤x/a-y/b=0[截距式]

(a、b分别为直线在x、y轴上的截距)

解析式表达局限性:

①所需条件较多(3个);

②、③不能表达没有斜率的直线(平行于x轴的直线);

④参数较多,计算过于烦琐;

⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)

形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.

正比例函数属于一次函数,正比例函数是一次函数的特殊形式.

即当一次函数 y=kx+b 若b=0,则此为正比例函数.

图像做法

1.列表

2.描点

3.连线(一定要经过坐标轴的原点)

其次,正比例函数的图像是经过原点和(1,k)[或(2,2k),(3,3k)等]两点的一条直线。

其他:当k0时,它的图像(除原点外)在第一、三象限,y随x的增大而增大

当k0时,它的图像(除原点外)在第二、四象限,y随x的增大而减小

总结:y=kx(k不等于0)

而以方程的角度来说,只要将正比例函数上的一个点的坐标给出,就能确定这个解析式

若求正比例函数与一次函数,二次函数或反比例函数的交点坐标,就是将两个已知的方程联立成方程组

求出其x,y值便可

正比例函数在线性规划问题中体现的力量也是无穷的

比如斜率问题就取决于K值,当K越大,则该函数图像与x轴的夹角越大,反之亦然

还有,Y=Kx是Y=K/x 图像的对称轴.

1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:

②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?

以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系.

C语言例题求解 分段函数求值 Time Limit: 1000MS Memory limit:

void main()

{

float x,y;

printf("请输入x的值:");

scanf("%f",x);

if(x  0)

y = x*x +1;

else if(x  0)

y = -x;

else 

y =100.00;

printf("输出值: %0.1f",y);

}


网站栏目:c语言函数例题 c语言函数题目
本文地址:http://mswzjz.cn/article/docphoj.html

其他资讯