我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

如何解决tensoflow在已训练模型上继续训练fineturn的问题-创新互联

小编给大家分享一下如何解决tensoflow在已训练模型上继续训练fineturn的问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

成都创新互联是少有的成都网站制作、网站建设、营销型企业网站、小程序开发、手机APP,开发、制作、设计、卖链接、推广优化一站式服务网络公司,从2013年创立,坚持透明化,价格低,无套路经营理念。让网页惊喜每一位访客多年来深受用户好评

解决tensoflow如何在已训练模型上继续训练fineturn的问题。

训练代码

任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解。

# -*- coding: utf-8 -*-)
import tensorflow as tf
 
 
# 声明占位变量x、y
x = tf.placeholder("float", shape=[None, 1])
y = tf.placeholder("float", [None, 1])
 
# 声明变量
W = tf.Variable(tf.zeros([1, 1]),name='w')
b = tf.Variable(tf.zeros([1]),name='b')
 
# 操作
result = tf.matmul(x, W) + b
 
# 损失函数
lost = tf.reduce_sum(tf.pow((result - y), 2))
 
# 优化
train_step = tf.train.GradientDescentOptimizer(0.0007).minimize(lost)
 
with tf.Session() as sess:
  # 初始化变量
  sess.run(tf.global_variables_initializer())
  saver = tf.train.Saver(max_to_keep=3)
 
  # 这里x、y给固定的值
  x_s = [[3.0]]
  y_s = [[100.0]]
 
  step = 0
  while (True):
    step += 1
    feed = {x: x_s, y: y_s}
    # 通过sess.run执行优化
    sess.run(train_step, feed_dict=feed)
 
    if step % 1000 == 0:
      print 'step: {0}, loss: {1}'.format(step, sess.run(lost, feed_dict=feed))
      if sess.run(lost, feed_dict=feed) < 1e-10 or step > 4e3:
        print ''
        # print 'final loss is: {}'.format(sess.run(lost, feed_dict=feed))
        print 'final result of {0} = {1}(目标值是100.0)'.format('x×W+b', 3.0 * sess.run(W) + sess.run(b))
        print ''
        print("模型保存的W值 : %f" % sess.run(W))
        print("模型保存的b : %f" % sess.run(b))
        break
  saver.save(sess, "./save_model/re-train", global_step=step) # 保存模型

训练完成之后生成模型文件:

如何解决tensoflow在已训练模型上继续训练fineturn的问题

训练输出:

step: 1000, loss: 4.89526428282e-08
step: 2000, loss: 4.89526428282e-08
step: 3000, loss: 4.89526428282e-08
step: 4000, loss: 4.89526428282e-08
step: 5000, loss: 4.89526428282e-08
 
 
final result of x×W+b = [[99.99978]](目标值是100.0)
 
模型保存的W值 : 29.999931
模型保存的b : 9.999982

保存在模型中的W值是 29.999931,b是 9.999982。

以下代码从保存的模型中恢复出训练状态,继续训练

任务描述: x = 3.0, y = 200.0, 运算公式 x×W+b = y,从上次训练的模型中恢复出训练参数,继续训练,求 W和b的最优解。

# -*- coding: utf-8 -*-)
import tensorflow as tf
 
 
# 声明占位变量x、y
x = tf.placeholder("float", shape=[None, 1])
y = tf.placeholder("float", [None, 1])
 
with tf.Session() as sess:
 
  # 初始化变量
  sess.run(tf.global_variables_initializer())
 
  # saver = tf.train.Saver(max_to_keep=3)
  saver = tf.train.import_meta_graph(r'./save_model/re-train-5000.meta') # 加载模型图结构
  saver.restore(sess, tf.train.latest_checkpoint(r'./save_model')) # 恢复数据
 
  # 从保存模型中恢复变量
  graph = tf.get_default_graph()
  W = graph.get_tensor_by_name("w:0")
  b = graph.get_tensor_by_name("b:0")
 
  print("从保存的模型中恢复出来的W值 : %f" % sess.run("w:0"))
  print("从保存的模型中恢复出来的b值 : %f" % sess.run("b:0"))
 
  # 操作
  result = tf.matmul(x, W) + b
  # 损失函数
  lost = tf.reduce_sum(tf.pow((result - y), 2))
  # 优化
  train_step = tf.train.GradientDescentOptimizer(0.0007).minimize(lost)
 
  # 这里x、y给固定的值
  x_s = [[3.0]]
  y_s = [[200.0]]
 
  step = 0
  while (True):
    step += 1
    feed = {x: x_s, y: y_s}
    # 通过sess.run执行优化
    sess.run(train_step, feed_dict=feed)
    if step % 1000 == 0:
      print 'step: {0}, loss: {1}'.format(step, sess.run(lost, feed_dict=feed))
      if sess.run(lost, feed_dict=feed) < 1e-10 or step > 4e3:
        print ''
        # print 'final loss is: {}'.format(sess.run(lost, feed_dict=feed))
        print 'final result of {0} = {1}(目标值是200.0)'.format('x×W+b', 3.0 * sess.run(W) + sess.run(b))
        print("模型保存的W值 : %f" % sess.run(W))
        print("模型保存的b : %f" % sess.run(b))
        break
  saver.save(sess, "./save_mode/re-train", global_step=step) # 保存模型

训练输出:

从保存的模型中恢复出来的W值 : 29.999931
从保存的模型中恢复出来的b值 : 9.999982
step: 1000, loss: 1.95810571313e-07
step: 2000, loss: 1.95810571313e-07
step: 3000, loss: 1.95810571313e-07
step: 4000, loss: 1.95810571313e-07
step: 5000, loss: 1.95810571313e-07
 
 
final result of x×W+b = [[199.99956]](目标值是200.0)
模型保存的W值 : 59.999866
模型保存的b : 19.999958

从保存的模型中恢复出来的W值是 29.999931,b是 9.999982,跟模型保存的值一致,说明加载成功。

总结

从头开始训练一个模型,需要通过 tf.train.Saver创建一个保存器,完成之后使用save方法保存模型到本地:

saver = tf.train.Saver(max_to_keep=3)
……
saver.save(sess, "./save_model/re-train", global_step=step) # 保存模型

在训练好的模型上继续训练,fineturn一个模型,可以使用tf.train.import_meta_graph方法加载图结构,使用restore方法恢复训练数据,最后使用同样的save方法保存到本地:

saver = tf.train.import_meta_graph(r'./save_model/re-train-10050.meta') # 加载模型图结构
saver.restore(sess, tf.train.latest_checkpoint(r'./save_model')) # 恢复数据
saver.save(sess, "./save_mode/re-train", global_step=step) # 保存模型

注:特殊情况下(如本例)需要从恢复的模型中加载出数据:

# 从保存模型中恢复变量
graph = tf.get_default_graph()
W = graph.get_tensor_by_name("w:0")
b = graph.get_tensor_by_name("b:0")

看完了这篇文章,相信你对“如何解决tensoflow在已训练模型上继续训练fineturn的问题”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站名称:如何解决tensoflow在已训练模型上继续训练fineturn的问题-创新互联
转载来于:http://mswzjz.cn/article/djdgij.html

其他资讯