十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
本文实例讲述了Python递归实现汉诺塔算法。分享给大家供大家参考,具体如下:
峰峰矿网站制作公司哪家好,找创新互联公司!从网页设计、网站建设、微信开发、APP开发、响应式网站等网站项目制作,到程序开发,运营维护。创新互联公司成立于2013年到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联公司。最近面试题,面试官让我5分钟实现汉诺塔算法(已然忘记汉诺塔是啥)。
痛定思痛,回来查了一下汉诺塔的题目和算法。题干与实现如下:
A基座有64个盘子,大在下小在上,每次移动一个盘子,每次都需要大在下小在上,全部移动到B基座,C基座为辅助基座。
# -*- coding:utf-8 -*- # 汉诺塔回溯递归实现 # 假设参数中初始杆为a,借助杆为c,阶段终止杆为b # 第一步,a状态借助b移动到c # 第二步,a移动到b # 第三步,c借助a移动到b class Solution: def hanoi(self, n, a, b, c): global lishan if n > 0: Solution.hanoi(self, n-1, a, c, b) b.append(lishan[n-1]) a.remove(lishan[n-1]) Solution.hanoi(self, n-1, c, b, a) so = Solution() n = 3 global lishan lishan = [x for x in xrange(n)] A = [x for x in xrange(n)] B = [] C = [] so.hanoi(3, A, B, C)print B