我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

java均值滤波代码 均值滤波的模板

使用C++代码完成 均值滤波器、中值滤波器、最大值滤波器、最小值滤波器分别对灰度图进行滤波

//中值滤波和均值大概这个样子

网站建设哪家好,找成都创新互联!专注于网页设计、网站建设、微信开发、小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了山南免费建站欢迎大家使用!

int nByteWidth=nWidth*3;

if (nByteWidth%4) nByteWidth+=4-(nByteWidth%4);

BYTE p[9],s;

int i,j;

for(y=1;ynHeight-1;y++)

{

for(x=3;xnWidth*3-3;x++)

{

//把一个像素周围的8个像素值分别赋值给p[0]到p[8]

p[0]=lpInput[x-3+(y-1)*nByteWidth];

p[1]=lpInput[x+(y-1)*nByteWidth];

p[2]=lpInput[x+3+(y-1)*nByteWidth];

p[3]=lpInput[x-3+y*nByteWidth];

p[4]=lpInput[x+y*nByteWidth];

p[5]=lpInput[x+3+y*nByteWidth];

p[6]=lpInput[x-3+(y+1)*nByteWidth];

p[7]=lpInput[x+(y+1)*nByteWidth];

p[8]=lpInput[x+3+(y+1)*nByteWidth];

//将p[0]到p[8]从小到大排列

for(j=0;j5;j++)

{

for(i=j+1;i9;i++)

{

if (p[j]p[i])

{

s=p[j];

p[j]=p[i];

p[i]=s;

}

}

}

//将各点的中值赋值给该像素

lpOutput[x+y*nByteWidth]=p[4];

}

//----------------------------------------

int sr,sg,sb;

int nByteWidth=nWidth*3;

if (nByteWidth%4) nByteWidth+=4-(nByteWidth%4);

for(y=1;ynHeight-1;y++)

{

for(x=1;xnWidth-1;x++)

{

p=x*3+y*nByteWidth;

sb=0;

sg=0;

sr=0;

for(y1=-1;y1=1;y1++)

for(x1=-1;x1=1;x1++)

{

//像素本身及其周围的八个像素(3X3窗口内的像素)的blue值之和

sb+=lpInput[(y+y1)*nByteWidth+(x+x1)*3];

//像素本身及其周围的八个像素(3X3窗口内的像素)的green值之和

sg+=lpInput[(y+y1)*nByteWidth+(x+x1)*3+1];

//像素本身及其周围的八个像素(3X3窗口内的像素)的red值之和

sr+=lpInput[(y+y1)*nByteWidth+(x+x1)*3+2];

}

//将red,green,blue值的平均值赋值给该像素

lpOutput[p+2]=sr/9;

lpOutput[p+1]=sg/9;

lpOutput[p]=sb/9;

}

}

均值滤波

  均值滤波是指用当前像素点周围N·N个像素值的均值来代替当前像素值。使用该方法遍历处理图像内的每一个像素点,即可完成整幅图像的均值滤波。

例如,希望对图7-7中位于第5行第5列的像素点进行均值滤波。

根据上述运算,针对每一个像素点,都是与一个内部值均为1/25的5×5矩阵相乘,得到均值滤波的计算结果,如图7-11所示。

将使用的5×5矩阵一般化,可以得到如图7-12所示的结果。

式中,M和N分别对应高度和宽度。一般情况下,M和N是相等的,例如比较常用的3×3、5×5、7×7等。如果M和N的值越大,参与运算的像素点数量就越多,图像失真越严重。

在OpenCV中,实现均值滤波的函数是cv2.blur(),其语法格式为:

式中:

通常情况下,使用均值滤波函数时,对于锚点anchor和边界样式borderType,直接采用其默认值即可。

【例7.2】针对噪声图像,使用不同大小的卷积核对其进行均值滤波,并显示均值滤波的情况。

  从图中可以看出,使用5×5的卷积核进行滤波处理时,图像的失真不明显;而使用30×30的卷积核进行滤波处理时,图像的失真情况较明显。

  卷积核越大,参与到均值运算中的像素就会越多,即当前点计算的是更多点的像素值的平均值。因此,卷积核越大,去噪效果越好,当然花费的计算时间也会越长,同时让图像失真越严重。在实际处理中,要在失真和去噪效果之间取得平衡,选取合适大小的卷积核。

编写用均值滤波去噪的matlab程序,用两种方法实现.(重谢)

1、双循环语句,移动平均法。

p双循环语句,移动平均法/p p%均值滤波/p

pclc,clear;/p

pf=imread('lena.bmp');/p

psubplot(121),imshow(f),title('原图');/p

pf1=imnoise(f,'gaussian',0.002,0.0008);/p

p%subplot(222),imshow(f1),title('添加高斯噪声图');/p

pk1=floor(3/2)+1;/p

pk2=floor(3/2)+1;/p pX=f1;/p

p[M,N]=size(X);/p puint8 Y=zeros(M,N);/p

pfunBox=zeros(3,3);/p pfor i=1:M-3 /p

p for j=1:N-3 /p p funBox=X(i:i+3,j:j+3); /p

p s=sum(funBox(:));/p p h=s/9; /p

p Y(i+k1,j+k2)=h; /p p end;/p

pend;/p pY=Y/255;/p

psubplot(122),imshow(Y),title('均值滤波');/p

p实现图:/p

2、filter2。

pfilter2/p

pclear all;/p

pI=imread('lena.bmp');/p

p%读入预处理图像/p

pimshow(I)/p p%显示预处理图像/p

pK1=filter2(fspecial('average',3),I)/255;/p p%进行3*3均值滤波/p

pK2=filter2(fspecial('average',5),I)/255;/p p%进行5*5均值滤波/p

pK3=filter2(fspecial('average',7),I)/255;/p p%进行7*7均值滤波/p

pfigure,imshow(K1)/p pfigure,imshow(K2)/p

pfigure,imshow(K3)/p

怎样用MATLAB实现中值和均值滤波

中值滤波楼上答了,5*5的均值滤波代码 w2=fspecial('average',[5 5]); %% 先定义一个滤波器 h=imfilter(a,w2,'replicate'); %%让图像通过滤波器 imshow(h); imwrite(h,'8.jpg');

均值滤波是

I=medfilt2(a,[3 3],'symmetric')

可以在matlab中查询medfilt函数的用法,本例是使用3*3的滤波器采用镜像边界法做均值滤波。


网站栏目:java均值滤波代码 均值滤波的模板
新闻来源:http://mswzjz.cn/article/ddecsip.html

其他资讯