贝锐智能攀枝花建站部专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

pandas中string如何转dataframe-创新互联

这篇文章主要为大家展示了“pandas中string如何转dataframe”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pandas中string如何转dataframe”这篇文章吧。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册网站空间、营销软件、网站建设、康保网站维护、网站推广。

业务上碰到用pandas处理一个大文件的内存不够问题,需要做concat 合并多个文件,每个文件数据在1.4亿行左右。当时第一反应是把dataframe分割成多块小文件处理,后面发现即使pandas内存问题解决了,用pickle做保存数据时也会提升内存不够的报错,后来把dataframe对象转化成string,发现内存占用减少了近一半。

所以打算用先转成string再dump到离线文件里,官网文档上只有to_string的说明,而从string转dataframe却没有提供直接的函数。

其实很简单,我们可以把string放到一个文件对象里,然后通过read_csv函数来创建dataframe对象。

import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
TESTDATA=StringIO("""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
""")
df = pd.read_csv(TESTDATA, sep=";")

以上是“pandas中string如何转dataframe”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:pandas中string如何转dataframe-创新互联
分享地址:http://mswzjz.cn/article/csgdjc.html

其他资讯