我们专注攀枝花网站设计 攀枝花网站制作 攀枝花网站建设
成都网站建设公司服务热线:400-028-6601

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

在python中利用KNN实现对iris进行分类的方法-创新互联

如下所示:

创新互联服务项目包括铁西网站建设、铁西网站制作、铁西网页制作以及铁西网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,铁西网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到铁西省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
from sklearn.datasets import load_iris
 
iris = load_iris()
 
print iris.data.shape
 
from sklearn.cross_validation import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size = 0.25, random_state = 33)
 
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
 
ss = StandardScaler()
 
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
 
knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test)
 
print 'The accuracy of K-Nearest Neighbor Classifier is: ', knc.score(X_test, y_test)
 
from sklearn.metrics import classification_report
 
print classification_report(y_test, y_predict, target_names = iris.target_names)

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前题目:在python中利用KNN实现对iris进行分类的方法-创新互联
浏览路径:http://mswzjz.cn/article/ceicjc.html

其他资讯