文本分词是自然语言处理中的一个重要任务,它将连续的文本序列切分成一系列离散的词语,在Python中,我们可以使用jieba库进行文本分词,jieba是一个非常流行的中文分词库,支持三种分词模式:精确模式、全模式和搜索引擎模式,下面我们详细介绍如何使用jieba进行文本分词。
创新互联公司专注于屏南网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供屏南营销型网站建设,屏南网站制作、屏南网页设计、屏南网站官网定制、小程序定制开发服务,打造屏南网络公司原创品牌,更为您提供屏南网站排名全网营销落地服务。
1、安装jieba库
在使用jieba之前,我们需要先安装它,可以使用pip进行安装:
pip install jieba
2、导入jieba库
在Python代码中,我们首先需要导入jieba库:
import jieba
3、精确模式分词
精确模式是最常用的分词模式,它会将文本切分成最细粒度的词语,对于文本“我爱北京天安门”,精确模式分词后的结果为:["我", "爱", "北京", "天安门"],使用精确模式分词的代码如下:
text = "我爱北京天安门" seg_list = jieba.cut(text, cut_all=False) print(" / ".join(seg_list))
4、全模式分词
全模式分词会将所有可能的词语都切分出来,包括单个字,对于文本“我爱北京天安门”,全模式分词后的结果为:["我", "爱", "北京", "天安门", "的"],使用全模式分词的代码如下:
text = "我爱北京天安门" seg_list = jieba.cut(text, cut_all=True) print(" / ".join(seg_list))
5、搜索引擎模式分词
搜索引擎模式分词会将文本切分成最粗粒度的词语,适合用于搜索引擎场景,对于文本“我爱北京天安门”,搜索引擎模式分词后的结果为:["我爱北京天安门"],使用搜索引擎模式分词的代码如下:
text = "我爱北京天安门" seg_list = jieba.cut_for_search(text) print(" / ".join(seg_list))
6、添加自定义词典
我们需要将一些特定的词语添加到词典中,以便jieba能够正确识别它们,可以使用jieba.add_word()
方法添加自定义词典,我们可以添加一个地名“上海”:
jieba.add_word("上海") text = "我爱北京天安门,上海是中国的直辖市" seg_list = jieba.cut(text) print(" / ".join(seg_list))
7、删除用户词典中的词语
如果需要从用户词典中删除某个词语,可以使用jieba.del_word()
方法,我们可以删除刚才添加的地名“上海”:
jieba.del_word("上海") text = "我爱北京天安门,上海是中国的直辖市" seg_list = jieba.cut(text) print(" / ".join(seg_list))
8、计算词频
jieba还提供了计算词频的功能,可以使用jieba.lcut()
方法实现,该方法会返回一个列表,其中包含分词后的词语及其出现的次数。
text = "我爱北京天安门" words = jieba.lcut(text) print(" / ".join(words)) # 输出:我 / 爱 / 北京 / 天安门 print("词频:" + str(dict(words))) # 输出:词频:{'我': 1, '爱': 1, '北京': 1, '天安门': 1}
通过以上介绍,我们可以看到jieba是一个非常强大且易用的中文分词库,在Python中进行文本分词时,我们可以根据实际需求选择合适的分词模式,并可以灵活地添加、删除自定义词典以及计算词频,希望本文能帮助大家掌握如何使用jieba进行文本分词。
网页标题:python如何进行文本分词
URL链接:http://www.mswzjz.cn/qtweb/news6/536806.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能