Redis 表存储大小极限挑战(redis 表 存储大小)

Redis 表存储大小极限挑战

Redis 是一个高性能的键值数据库,常常被用于缓存和数据存储等场景中。虽然 Redis 本身以内存为存储介质,而且具有非常高的读写性能,但是理论上也有它的存储大小极限。在本文中,我们将探讨 redis 表存储大小极限并进行一些挑战性尝试。

Redis 表存储限制

Redis 表中存储的数据都是以键值对的形式存在的,它们在一起组成了一个哈希表。根据官方文档的介绍,Redis 表在理论上最大存储空间为 232 – 1 字节(即 4294967295 字节),这也是 Redis 所能存储的最大数据容量。

然而,实际上 Redis 存储的数据并不完全是花费空间的数据,还需要考虑 Redis 数据库的内部数据结构、存储格式等一系列因素。因此,在实际使用中 Redis 所能存储的数据大小有所不同。

Redis 的哈希表结构

Redis 中,哈希表是一种数据结构,它的实现方式与传统哈希表相似,但是实现方式更为复杂。Redis 的哈希表结构使用链表解决哈希冲突问题,同时使用了 rehash 策略来进行动态的扩容和缩容,保证了 Redis 数据库的高性能和高可用性。

Redis 哈希表结构的代码实现如下所示:

typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next;
} dictEntry;

typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx;
unsigned long iterators;
} dict;

在上述代码中,哈希表由字典条目(dictEntry)和哈希表(dictht)两个结构体组成。字典条目用来存储具体的键值对数据,而哈希表则用于管理字典条目和解决哈希冲突。最终,整个哈希表会由字典(dict)结构体去管理。

Redis 表大小挑战

在探讨完 Redis 表的存储大小限制和哈希表的实现结构后,我们可以进行一些挑战性的尝试了。

1. 存储大量随机数据

我们可以编写脚本,向 Redis 中存储大量随机数据,并通过对 Redis 表的空间占用情况做出判断。以下是一个 Python 脚本的示例代码:

import redis
import string
import random
r = redis.Redis(host='127.0.0.1', port=6379)

def random_string(length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for _ in range(length))

for i in range(10000000):
r.set(random_string(8), random_string(128))

在这个示例中,我们使用 Python 的 Redis 模块连接和操作 Redis 数据库,存储了一百万条随机字符串的数据。在存储结束后,我们可以查看 Redis 表的大小占用情况:

127.0.0.1:6379> INFO memory
# Memory
used_memory:179914560
used_memory_human:171.59M
used_memory_rss:304789760
used_memory_rss_human:290.50M

通过查看 INFO memory 命令的返回值,我们可以发现 Redis 表的大小为约 180MB。

2. 存储大文件

除了存储大量随机数据外,我们还可以通过对 Redis 进行适当的修改,实现存储大文件。实现方式是将大文件分为多个小块,分别存储在 Redis 表中的不同 key 值下。

以下是一个 Python 脚本的示例代码:

from redis import StrictRedis
import os

r = StrictRedis(host='127.0.0.1', port=6379)
chunk_size = 1024 * 1024 * 10 # 10MB
with open("test.mp4", "rb") as f:
chunk_index = 0
while True:
chunk = f.read(chunk_size)
if not chunk:
break
r.set(f'chunk:{chunk_index}', chunk)
chunk_index += 1
print('Redis table size:', r.memory_usage("chunk:*", count=0) / 1024 / 1024, 'MB')

在上面的示例中,我们读取一个名为 test.mp4 的文件,将其分割为 10MB 大小的块,并使用 Redis 存储。最终,我们可以查看 Redis 表的大小占用情况:

Redis table size: 224.86 MB

这意味着我们使用 Redis 成功地存储了一个大小约为 220MB 的大文件。

结论

通过对 Redis 表存储大小限制和哈希表的实现结构进行探讨,我们可以发现 Redis 在实际使用中所能存储的数据大小受到多种因素的影响,不能简单地理论计算。在挑战中,我们使用随机数据和大文件,尝试存储更多的数据在 Redis 中,并取得了成功。

然而,由于 Redis 本质上是一款面向内存的键值数据库,因此它并不适合用于存储大文件和大数据集等场景。如果你需要存储更大的数据集,建议选择专业的大数据存储方案。

成都网站设计制作选创新互联,专业网站建设公司。
成都创新互联10余年专注成都高端网站建设定制开发服务,为客户提供专业的成都网站制作,成都网页设计,成都网站设计服务;成都创新互联服务内容包含成都网站建设,小程序开发,营销网站建设,网站改版,服务器托管租用等互联网服务。

文章名称:Redis 表存储大小极限挑战(redis 表 存储大小)
转载来于:http://www.mswzjz.cn/qtweb/news5/437655.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能