通常,人们使用两种编程语言之一来应用机器学习(ML)方法和算法:Python或R.关于机器学习的书籍,课程和教程通常也使用这些语言中的一种(或两者)。
Python是一种通用编程语言,不仅用于机器学习,还用于科学计算,后端Web开发,桌面应用程序等.R主要用于统计学家。但是,它们至少有两个共同特征:
在许多情况下,ML算法在Fortran,C,C ++或Cython中实现,并从Python或R调用。
Java也用于机器学习,但通常由专业程序员使用。
在过去的几年中,JavaScript得到了普及,并且出现了一些非常有趣的机器学习库,可以在浏览器或Node.js上实现ML方法。令人惊讶的是,许多这些库在JavaScript中实现了大量代码。
ml.js
ml.js是一个全面的,通用的JavaScript ML库,适用于浏览器和Node.js. 它提供了以下例程:
支持的监督学习方法是:
此外,ml.js提供了几种无监督的学习方法:
TensorFlow.js
TensorFlow是***的机器学习库之一。它侧重于人工神经网络的各种类型和结构,包括深度网络以及网络的组件。
TensorFlow由Google Brain Team创建,使用C ++和Python编写。但是,它可以与包括JavaScript在内的多种语言一起使用。
TensorFlow是一个非常全面的库,仍然可以轻松地构建和培训模型。它支持各种各样的网络层,激活功能,优化器和其他组件。它具有良好的性能并提供GPU支持。
TensorFlow.js是一个用于浏览器或Node.js的JavaScript ML库。它支持WebGL。
brain.js
brain.js是一个用JavaScript编写的库 - 专注于训练和应用前馈和循环神经网络。它还提供其他实用程序,例如神经网络所需的数学例程。
它提供了高级选项,如:
brain.js将模型保存到JSON文件或从中加载模型。
ConvNetJS
ConvNetJS是神经网络和深度学习的另一个库。它可以在浏览器中训练神经网络。除了分类和回归问题,它还有强化学习模块(使用Q学习)仍然是实验性的。ConvNetJS为在图像识别方面表现优异的卷积神经网络提供支持。
在ConvNetJS中,神经网络是层的列表。它提供以下层:
它支持几个重要的激活功能,如:
以及优化器如:
执照:麻省理工学院。
WebDNN
WebDNN是一个专注于深度神经网络的图书馆,包括具有LSTM架构的递归神经网络。它使用TypeScript和Python编写,并提供JavaScript和Python API。
它还提供了在浏览器中执行GPU的可能性。
WebDNN的一个非常方便的功能是可以转换和使用PyTorch,TensorFlow,Keras,Caffemodel或Chainer预训练的模型。
natural
natural是一个用于Node.js的自然语言处理的JavaScript库。
它支持:
结论
在过去的几年里,JavaScript和机器学习都得到了很多关注和普及。尽管最初是为了实现网页的动态行为而创建的,但JavaScript成为实现和应用机器学习方法的***语言之一,尤其是在浏览器或服务器(Node.js)中。
本文提供了有关JavaScript机器学习库可用性的初始信息。
新闻名称:2019年用于JavaScript的6大机器学习库
标题来源:http://www.mswzjz.cn/qtweb/news5/435705.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能