高效稳定的内存数据库集群方案(内存数据库集群)

随着互联网技术的发展,现如今的应用场景多种多样,数据量不断增长,效率和稳定性成为了企业所面临的主要问题。而内存数据库作为一种新型的数据库技术,由于它能够保证高效性和稳定性,越来越受到企业的青睐。本文将就内存数据库集群方案进行探讨,并提出一种高效稳定的方案。

公司主营业务:网站设计制作、成都网站制作、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联公司推出青浦免费做网站回馈大家。

一、内存数据库

内存数据库(Memory Database)又称为主存储数据库,是一种数据库技术,具有高效的数据存取和操作速度,它的主要特点是将数据存储在内存中,而不是像传统的关系型数据库存储在磁盘中。内存数据库的访问速度比传统的磁盘数据库快数倍,特别是在数据量较大的情况下,它能够显著提高数据访问的效率。

内存数据库是以内存为主存储介质的数据库,与磁盘存储的传统数据库相比,内存数据库的优势在于速度快、读写效率高、响应时间短、可伸缩性好,这些特点使得内存数据库非常适合高速读取、写入和实时处理的业务场景,如金融交易系统、游戏行业、实时数据分析等领域。

二、内存数据库集群

内存数据库的高效性和稳定性让它被越来越多的企业所关注,但是内存数据库单机的性能是有限的,当处理的数据量超过一定的范围时,单机处理的能力就不足以满足业务需求。为了提高内存数据库的处理能力,企业可以采用内存数据库集群的方案。

内存数据库集群是一个由多台服务器组成的分布式系统,可以实现多台服务器之间的数据共享与负载均衡。它能够扩展内存数据库的容量并加强数据的高可用性,保障企业关键业务系统的稳定运行。

三、内存数据库集群方案

在实现内存数据库集群方案前,需要了解几个基本概念:

1. 热点数据:指特定时间段内访问频率较高的数据。

2. 分区:将数据分配到不同的服务器上进行管理和存储。

3. 副本:将数据复制到不同的服务器上进行备份,以保障数据的高可用性。

内存数据库集群方案需要考虑下面几个方面:

1. 负载均衡:为了保证多个服务器上的内存数据库可以合理地分配负载,需要实现负载均衡。应用程序在访问内存数据库时,先通过负载均衡的方式将请求分配到一个服务器上,然后由该台服务器代理操作其他的服务器,实现数据的读写操作。

2. 分区方案:由于内存数据库的空间有限,需要将数据分配到不同的服务器上进行管理和存储。这时可以考虑采用哈希分区的方法,通过对数据进行哈希计算后,将其分配到不同的服务器上进行管理。

3. 数据的备份和恢复:为了保障数据的安全,需要将重要数据进行备份。在服务器出现故障等情况下,及时将数据恢复到新的服务器上,保障业务的正常运行。

4. 热点数据处理:由于热点数据的存在,可能会导致单台服务器处理不过来,出现性能瓶颈。这时可以采用缓存机制,将热点数据缓存到内存中,以缓解服务器压力,并通过数据分区,将热点数据分配到多台服务器上进行并发处理。

四、案例分析

选用Redis内存数据库作为内存数据库集群的示例。Redis是一个开源的高性能的内存数据库,它支持快速读取和缓存,能够满足高并发读写的要求,并且可以通过多种方式进行数据分区。下面是一种适合企业的Redis内存数据库集群方案。

1. 架构设计

该方案采用主从复制架构,主机负责写入操作,从机负责读取操作,从机会实时复制主机上的数据。同时,每台机器都有自己的副本,以保障数据的安全。

2. 数据分区

通过哈希一致性算法,将数据分配到不同的服务器上,解决热点数据存在的问题。当一台服务器出现宕机时,可以自动将它所对应的数据转移到其他服务器上,保证数据的安全性。

3. 数据备份

通过Redis集群提供的快照和AOF(Append Only File)的功能,实现数据的备份和恢复。在服务器发生宕机或者其他突况时,可以快速地将数据从备份中恢复。

4. 数据缓存

通过使用Redis集群提供的分布式锁和分布式缓存功能,对热点数据进行缓存和处理,实现数据的并发访问和处理,缓解服务器的压力。

五、

本文主要介绍了内存数据库集群方案的实现,并以Redis内存数据库为例,提出了一种高效稳定的方案。对于企业来说,实现内存数据库集群方案可以提高系统的可靠性、效率和稳定性,缓解因为数据量过大带来的问题。同时,内存数据库集群方案具有较强的可扩展性和伸缩性,能够满足企业日益增长的业务需求,为企业的业务发展提供了坚实的支撑。

成都网站建设公司-创新互联,建站经验丰富以策略为先导10多年以来专注数字化网站建设,提供企业网站建设,高端网站设计,响应式网站制作,设计师量身打造品牌风格,热线:028-86922220

Redis和Memcache的区别总结

1. Redis是什么

这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一正咐漏个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。

互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。

2. Redis不可能比Memcache快

很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。

Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。

CAS问题。CAS是Memcached中比较方便的一种防止竞争修改简蔽资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。

3. 单台Redis的存放数据必须比物理内存小

Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。

这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。

基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的限制。并实现了数据冷热分离。

4. Redis的VM实现是重复造轮子

Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物举烂理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。

作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。

5. 用get/set方式使用Redis

作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是更优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。

假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。

这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。

6. 使用aof代替snapshot

Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。

其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。

小结

要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。

区别:

1、存储方式不同

memecache 把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小;redis有部份存在硬盘上,这样能保证数据的持久性,支持数据的持久化(笔者注:有快照和AOF日志两种持久化方式,在实际应用的时候,要特别注意配置文件快照参数,要不就很有可能服务器频繁满载做dump)。

2、数据支持类型不同

redis在数据支持上要比memecache多的多。

3、使用底层模型不同

新版本的redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

4、运行环境不同

redis目前官方只支持LINUX 上去行,从而省去了对于其它系统的支持,这样的话可以更好的把精力用于本系统 环境上的优化,虽然后来微软有一个小组为其写了补丁。但是没有放到主干上。

扩展资料

注意事项

1、 Redis和Memcache都是将数据存放在内存中,都是内存数据库。不过memcache还可用于缓存其他东西,例如图片、视频等等。

2、Redis不仅仅支持简单的k/v类型的数据,同时轮樱还提供list,set,hash等数据结构的存储。

3、虚拟内存–Redis当物理内存用完时,可以将一些很久没用到的value 交换到磁盘 。

4、过期策略–memcache在set时就指定,例如set key,即永不过期。Redis可以通过例如expire 设定,例如expire name 10 。

5、分布式–设定memcache集群做段,利用magent做一主多从;redis可以做一主多从。都可以一主一,存储数据安全–memcache挂掉后,数据没了;redis可以定期保存到磁盘(持久化) 。

参考资料:

百度百科:redis

百度百科:纯桐誉memcache

1. Redis是什么

这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一正咐漏个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。

互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。

2. Redis不可能比Memcache快

很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。

Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。

CAS问题。CAS是Memcached中比较方便的一种防止竞争修改简蔽资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。

3. 单台Redis的存放数据必须比物理内存小

Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。

这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。

基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的限制。并实现了数据冷热分离。

4. Redis的VM实现是重复造轮子

Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物举烂理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。

作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。

5. 用get/set方式使用Redis

作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是更优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。

假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。

这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。

6. 使用aof代替snapshot

Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。

其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。

小结

要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。

Redis的作者Salvatore Sanfilippo曾经对这两种基于内存的数据存储系统进行过比较:

1、Redis支持服务器端的数据操作:Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached里,你需要将数据拿到客空拿户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作,那么Redis会是不错的选择。

2、内存使用效率对比:使用简单的key-value存储的话,Memcached的内存利用率更高,而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。

3、性能对比:由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存储大数据的性能上进行优化,但是比起Memcached,还是稍有逊色。

具体为什么会出现上面的结论,以下为收集到的资料:

1、数据类型支持不同

与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set。Redis内部使用一个redisObject对象来表示所有的key和value。redisObject最主要的信息如斗肆搭图所示:

type代表一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的是一个普通字符串雹尺,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当然前提是这个字符串本身可以用数值表示,比如:”123″ “456”这样的字符串。只有打开了Redis的虚拟内存功能,vm字段字段才会真正的分配内存,该功能默认是关闭状态的。

1)String

常用命令:set/get/decr/incr/mget等;

应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;

实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。

2)Hash

常用命令:hget/hset/hgetall等

应用场景:我们要存储一个用户信息对象数据,其中包括用户ID、用户姓名、年龄和生日,通过用户ID我们希望获取该用户的姓名或者年龄或者生日;

实现方式:Redis的Hash实际是内部存储的Value为一个HashMap,并提供了直接存取这个Map成员的接口。如图所示,Key是用户ID, value是一个Map。这个Map的key是成员的属性名,value是属性值。这样对数据的修改和存取都可以直接通过其内部Map的Key(Redis里称内部Map的key为field), 也就是通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据。当前HashMap的实现有两种方式:当HashMap的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,这时对应的value的redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。

3)List

常用命令:lpush/rpush/lpop/rpop/lrange等;

应用场景:Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现;

实现方式:Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。

4)Set

常用命令:sadd/spop/embers/sunion等;

应用场景:Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set内的重要接口,这个也是list所不能提供的;

实现方式:set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在内的原因。

5)Sorted Set

常用命令:zadd/zrange/zrem/zcard等;

应用场景:Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。

实现方式:Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。

2、内存管理机制不同

在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个更大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个操作,直到子线程完成swap操作后才可以进行修改。当从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。

对于像Redis和Memcached这种基于内存的数据库系统来说,内存管理的效率高低是影响系统性能的关键因素。传统C语言中的malloc/free函数是最常用的分配和释放内存的方法,但是这种方法存在着很大的缺陷:首先,对于开发人员来说不匹配的malloc和free容易造成内存泄露;其次频繁调用会造成大量内存碎片无法回收重新利用,降低内存利用率;最后作为系统调用,其系统开销远远大于一般函数调用。所以,为了提高内存的管理效率,高效的内存管理方案都不会直接使用malloc/free调用。Redis和Memcached均使用了自身设计的内存管理机制,但是实现方法存在很大的差异,下面将会对两者的内存管理机制分别进行介绍。

Memcached默认使用Slab Allocation机制管理内存,其主要思想是按照预先规定的大小,将分配的内存分割成特定长度的块以存储相应长度的key-value数据记录,以完全解决内存碎片问题。Slab Allocation机制只为存储外部数据而设计,也就是说所有的key-value数据都存储在Slab Allocation系统里,而Memcached的其它内存请求则通过普通的malloc/free来申请,因为这些请求的数量和频率决定了它们不会对整个系统的性能造成影响Slab Allocation的原理相当简单。 如图所示,它首先从操作系统申请一大块内存,并将其分割成各种尺寸的块Chunk,并把尺寸相同的块分成组Slab Class。其中,Chunk就是用来存储key-value数据的最小单位。每个Slab Class的大小,可以在Memcached启动的时候通过制定Growth Factor来控制。假定图中Growth Factor的取值为1.25,如果之一组Chunk的大小为88个字节,第二组Chunk的大小就为112个字节,依此类推。

当Memcached接收到客户端发送过来的数据时首先会根据收到数据的大小选择一个最合适的Slab Class,然后通过查询Memcached保存着的该Slab Class内空闲Chunk的列表就可以找到一个可用于存储数据的Chunk。当一条数据库过期或者丢弃时,该记录所占用的Chunk就可以回收,重新添加到空闲列表中。从以上过程我们可以看出Memcached的内存管理制效率高,而且不会造成内存碎片,但是它更大的缺点就是会导致空间浪费。因为每个Chunk都分配了特定长度的内存空间,所以变长数据无法充分利用这些空间。如图 所示,将100个字节的数据缓存到128个字节的Chunk中,剩余的28个字节就浪费掉了。

Redis的内存管理主要通过源码中zmalloc.h和zmalloc.c两个文件来实现的。Redis为了方便内存的管理,在分配一块内存之后,会将这块内存的大小存入内存块的头部。如图所示,real_ptr是redis调用malloc后返回的指针。redis将内存块的大小size存入头部,size所占据的内存大小是已知的,为size_t类型的长度,然后返回ret_ptr。当需要释放内存的时候,ret_ptr被传给内存管理程序。通过ret_ptr,程序可以很容易的算出real_ptr的值,然后将real_ptr传给free释放内存。

Redis通过定义一个数组来记录所有的内存分配情况,这个数组的长度为ZMALLOC_MAX_ALLOC_STAT。数组的每一个元素代表当前程序所分配的内存块的个数,且内存块的大小为该元素的下标。在源码中,这个数组为zmalloc_allocations。zmalloc_allocations代表已经分配的长度为16bytes的内存块的个数。zmalloc.c中有一个静态变量used_memory用来记录当前分配的内存总大小。所以,总的来看,Redis采用的是包装的mallc/free,相较于Memcached的内存管理方法来说,要简单很多。

3、数据持久化支持

Redis虽然是基于内存的存储系统,但是它本身是支持内存数据的持久化的,而且提供两种主要的持久化策略:RDB快照和AOF日志。而memcached是不支持数据持久化操作的。

1)RDB快照

Redis支持将当前数据的快照存成一个数据文件的持久化机制,即RDB快照。但是一个持续写入的数据库如何生成快照呢?Redis借助了fork命令的copy on write机制。在生成快照时,将当前进程fork出一个子进程,然后在子进程中循环所有的数据,将数据写成为RDB文件。我们可以通过Redis的save指令来配置RDB快照生成的时机,比如配置10分钟就生成快照,也可以配置有1000次写入就生成快照,也可以多个规则一起实施。这些规则的定义就在Redis的配置文件中,你也可以通过Redis的CONFIG SET命令在Redis运行时设置规则,不需要重启Redis。

Redis的RDB文件不会坏掉,因为其写操作是在一个新进程中进行的,当生成一个新的RDB文件时,Redis生成的子进程会先将数据写到一个临时文件中,然后通过原子性rename系统调用将临时文件重命名为RDB文件,这样在任何时候出现故障,Redis的RDB文件都总是可用的。同时,Redis的RDB文件也是Redis主从同步内部实现中的一环。RDB有他的不足,就是一旦数据库出现问题,那么我们的RDB文件中保存的数据并不是全新的,从上次RDB文件生成到Redis停机这段时间的数据全部丢掉了。在某些业务下,这是可以忍受的。

2)AOF日志

AOF日志的全称是append only file,它是一个追加写入的日志文件。与一般数据库的binlog不同的是,AOF文件是可识别的纯文本,它的内容就是一个个的Redis标准命令。只有那些会导致数据发生修改的命令才会追加到AOF文件。每一条修改数据的命令都生成一条日志,AOF文件会越来越大,所以Redis又提供了一个功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一条记录的操作只会有一次,而不像一份老文件那样,可能记录了对同一个值的多次操作。其生成过程和RDB类似,也是fork一个进程,直接遍历数据,写入新的AOF临时文件。在写入新文件的过程中,所有的写操作日志还是会写到原来老的AOF文件中,同时还会记录在内存缓冲区中。当重完操作完成后,会将所有缓冲区中的日志一次性写入到临时文件中。然后调用原子性的rename命令用新的AOF文件取代老的AOF文件。

AOF是一个写文件操作,其目的是将操作日志写到磁盘上,所以它也同样会遇到我们上面说的写操作的流程。在Redis中对AOF调用write写入后,通过appendfsync选项来控制调用fsync将其写到磁盘上的时间,下面appendfsync的三个设置项,安全强度逐渐变强。

appendfsync no 当设置appendfsync为no的时候,Redis不会主动调用fsync去将AOF日志内容同步到磁盘,所以这一切就完全依赖于操作系统的调试了。对大多数Linux操作系统,是每30秒进行一次fsync,将缓冲区中的数据写到磁盘上。

appendfsync everysec 当设置appendfsync为everysec的时候,Redis会默认每隔一秒进行一次fsync调用,将缓冲区中的数据写到磁盘。但是当这一次的fsync调用时长超过1秒时。Redis会采取延迟fsync的策略,再等一秒钟。也就是在两秒后再进行fsync,这一次的fsync就不管会执行多长时间都会进行。这时候由于在fsync时文件描述符会被阻塞,所以当前的写操作就会阻塞。所以结论就是,在绝大多数情况下,Redis会每隔一秒进行一次fsync。在最坏的情况下,两秒钟会进行一次fsync操作。这一操作在大多数数据库系统中被称为group commit,就是组合多次写操作的数据,一次性将日志写到磁盘。

appednfsync always 当设置appendfsync为always时,每一次写操作都会调用一次fsync,这时数据是最安全的,当然,由于每次都会执行fsync,所以其性能也会受到影响。

对于一般性的业务需求,建议使用RDB的方式进行持久化,原因是RDB的开销并相比AOF日志要低很多,对于那些无法忍数据丢失的应用,建议使用AOF日志。

4、集群管理的不同

Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的更大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。

Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。下图给出了Memcached的分布式存储实现架构。当客户端向Memcached集群发送数据之前,首先会通过内置的分布式算法计算出该条数据的目标节点,然后数据会直接发送到该节点上存储。但客户端查询数据时,同样要计算出查询数据所在的节点,然后直接向该节点发送查询请求以获取数据。

相较于Memcached只能采用客户端实现分布式存储,Redis更偏向于在服务器端构建分布式存储。最新版本的Redis已经支持了分布式存储功能。Redis Cluster是一个实现了分布式且允许单点故障的Redis高级版本,它没有中心节点,具有线性可伸缩的功能。下图给出Redis Cluster的分布式存储架构,其中节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信。在数据的放置策略上,Redis Cluster将整个key的数值域分成4096个哈希槽,每个节点上可以存储一个或多个哈希槽,也就是说当前Redis Cluster支持的更大节点数就是4096。Redis Cluster使用的分布式算法也很简单:crc16( key ) % HASH_SLOTS_NUMBER。

为了保证单点故障下的数据可用性,Redis Cluster引入了Master节点和Slave节点。在Redis Cluster中,每个Master节点都会有对应的两个用于冗余的Slave节点。这样在整个集群中,任意两个节点的宕机都不会导致数据的不可用。当Master节点退出后,集群会自动选择一个Slave节点成为新的Master节点。

Redis和Memcache的区别是:读音不同、含义不同、用法不同。

一、读音不同

1.Redis

读音神扮灶:英   美

2.Memcache

读音:英   美

二、含义不同

1.Redis

释义:n. 幼虫

2.Memcache

释义:n. 胡子,髭

三、用法不同

1.Redis

用法:多用于一般现在时,在句中仅作名词,属于句中的一部分,与其他成分不用逗号隔开。

2.Memcache

用法:引出造成后果的原因,在句中作主语、状语和定语。

扩展资料:

Redis例句:游扮

The redia feeds on snail tissue off other larval stages through asexual reproduction.

雷蚴靠进食蜗牛的组织存活,并通过无性繁殖自身来渡过其幼虫阶段。

Memcache例句:

1、The World Mustache Championships are for humans only?

世界胡子缺伍锦标赛只能人类参加么?

2、A little man with gray mustache cut off her hair with shears and dropped it on the ground.

128G 内存 是啥概念?

你发这个问题有点早了,09年刚出Win Vista 64位的操作系统可以支持128G的内存~但是那个时候估计中国市场上还衫仔链没戚毕有卖的~现在或孙我也在找 ~

听我说 我否认一下回答的所茄裂拍有同志

内存有1TB的 真的 我不知道走鸽的内存大小 但是我知道有内存1TB的颤羡电脑源芦

这样的电脑一般是用来模拟进程的

类似于气候 洋流 和 国土安全

诚心回答

128G内存的服务器很正常的,不用大惊小怪的

pc server跑些大计算量的数据库

如果是象mysql和db2的集群内存岁老衫数据库

128G似乎就含扰小了点

在小型机以上乎腔级别的,128G才入个门而已

首次听说啊

这么大的内存恐怕不是3D渲染

128G的内存就完全清腔不需要硬盘了

内存的空间足够系统了

我行谈想你说的科学运算的可能性档正碰大一些

有机会让兄弟也看看。张张见识啊

现在都2TB硬盘了啊 内存当然要上100G啦

内存数据库 集群的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于内存数据库 集群,高效稳定的内存数据库集群方案,Redis和Memcache的区别总结,128G 内存 是啥概念?的信息别忘了在本站进行查找喔。

成都创新互联科技公司主营:网站设计、网站建设、小程序制作、成都软件开发、网页设计、微信开发、成都小程序开发、网站制作、网站开发等业务,是专业的成都做小程序公司、成都网站建设公司成都做网站的公司。创新互联公司集小程序制作创意,网站制作策划,画册、网页、VI设计,网站、软件、微信、小程序开发于一体。

网站名称:高效稳定的内存数据库集群方案(内存数据库集群)
分享地址:http://www.mswzjz.cn/qtweb/news5/113855.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能