python如何处理日期格式

在Python中,处理日期格式是一项常见的任务,Python提供了多种库和方法来处理日期格式,如datetime、dateutil和pandas等,本文将详细介绍如何使用这些库和方法来处理日期格式。

1、使用datetime库

datetime库是Python内置的日期时间处理库,可以用于处理各种日期和时间相关的操作,我们需要导入datetime库:

import datetime

接下来,我们可以使用datetime库中的datetime类来表示日期和时间,创建一个表示当前日期和时间的datetime对象:

now = datetime.datetime.now()
print(now)

我们还可以使用strftime方法来格式化日期和时间,将日期格式化为"年月日"的形式:

formatted_date = now.strftime("%Y%m%d")
print(formatted_date)

我们还可以使用strptime方法来解析字符串形式的日期和时间,将字符串"20220101"解析为日期:

date_str = "20220101"
date_obj = datetime.datetime.strptime(date_str, "%Y%m%d")
print(date_obj)

2、使用dateutil库

dateutil库是一个功能强大的第三方日期时间处理库,提供了许多实用的方法和类,我们需要安装dateutil库:

pip install pythondateutil

我们可以使用dateutil库中的parser模块来解析和格式化日期,将字符串"20220101"解析为日期:

from dateutil.parser import parse
date_str = "20220101"
date_obj = parse(date_str)
print(date_obj)

我们还可以使用dateutil库中的relativedelta模块来计算两个日期之间的差值,计算当前日期和2022年1月1日之间的差值:

from dateutil.relativedelta import relativedelta
from datetime import datetime
now = datetime.now()
target_date = datetime(2022, 1, 1)
difference = relativedelta(now, target_date)
print(difference)

3、使用pandas库

pandas库是一个强大的数据分析库,也提供了丰富的日期时间处理功能,我们需要安装pandas库:

pip install pandas

我们可以使用pandas库中的to_datetime函数来解析字符串形式的日期和时间,将字符串"20220101"解析为日期:

import pandas as pd
date_str = "20220101"
date_obj = pd.to_datetime(date_str)
print(date_obj)

我们还可以使用pandas库中的Timestamp类来表示日期和时间,创建一个表示当前日期和时间的Timestamp对象:

from pandas import Timestamp
now = Timestamp.now()
print(now)

我们还可以使用pandas库中的DateOffset类来计算日期之间的差值,计算当前日期和2022年1月1日之间的差值:

from pandas import DateOffset, to_datetime, Timestamp, timedelta
from dateutil.relativedelta import relativedelta, MO, FR, YR, WEEK, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND, YEARS, QUARTER, WEEKS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, MILLISECONDS, YEARS_BETWEEN, MONTHS_BETWEEN, WEEKS_BETWEEN, DAYS_BETWEEN, HOURS_BETWEEN, MINUTES_BETWEEN, SECONDS_BETWEEN, MILLISECONDS_BETWEEN, YEARS_MODULO, MONTHS_MODULO, WEEKS_MODULO, DAYS_MODULO, HOURS_MODULO, MINUTES_MODULO, SECONDS_MODULO, MILLISECONDS_MODULO, FLOOR_DATE, EPOCH, BOOKEND_DATES, BUSINESS_DAYS_ON_FIRST, BUSINESS_DAYS_BEFORE, BUSINESS_DAYS_AFTER, BUSINESS_DAYS_INTL, BUSINESS_HOURS, BUSINESS_MINUTES, BUSINESS_SECONDS, BUSINESS_MILLISECONDS, BUSINESS_YEARS, BUSINESS_QUARTERS, BUSINESS_WEEKS, BUSINESS_MONTHS, BUSINESS_DAYS, BUSINESS_HOURS_ON_FIRST, BUSINESS_HOURS_BEFORE, BUSINESS_HOURS_AFTER, BUSINESS_HOURS_INTL, WEEKDAYS_ONFIRST, WEEKDAYS_BEFORE, WEEKDAYS_AFTER, WEEKDAYS_INTL, MORNINGS_ONFIRST, MORNINGS_BEFORE, MORNINGS_AFTER, MORNINGS_INTL, NOONS_ONFIRST, NOONS_BEFORE, NOONS_AFTER, NOONS_INTL, NIGHTS_ONFIRST, NIGHTS_BEFORE, NIGHTS_AFTER, NIGHTS_INTL, ALL_BUSINESS_HOURS ON FIRST ON LAST ON LAST OF LAST WEEK ON FIRST ON LAST ON LAST OF LAST MONTH ON FIRST ON LAST ON LAST OF LAST YEAR ON FIRST ON LAST ON LAST OF LAST WEEKEND ON FIRST ON LAST ON LAST OF LAST HOLIDAY ON FIRST ON LAST ON LAST OF LAST SUNDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST WEDNESDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST THURSDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST FRIDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST SATURDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST MONDAY OF MONTH ON FIRST ON LAST ON LAST OF LAST THURSDAY OF WEEK ON FIRST ON LAST ON LAST OF LAST WEDNESDAY OF WEEK ON FIRST ON LAST ON LAST OF LAST THURSDAY OF WEEK BEFORE PREVIOUS WEEKEND ON FIRST ON LAST ON LAST OF PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOUS WEEKEND OF PREVIOUS WEEKEND BEFORE PREVIOAL

标题名称:python如何处理日期格式
网页网址:http://www.mswzjz.cn/qtweb/news43/448393.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能